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ABSTRACT

Panulirus argus Virus 1 (PaVl) is an emerging disease in Caribbean spiny lobster 
Panulirus argus. The virus was discovered coincidentally during a year o f dramatic 
decline in total landings of the lobster. This virus is considered a threat to the lobster 
industry in the Florida Keys.

A sensitive and specific fluorescence in situ hybridization (FISH) assay was 
developed for diagnosis of PaV 1 in the tissues o f lobsters. The lower limit o f detection 
using the 110-bp probe in a dot-blot hybridization for PaVl DNA was 10 pg of cloned 
PaVl template and 10 ng of genomic DNA extracted from hemolymph of diseased 
lobster. The probe specifically hybridized to PaVl-infected cells in all the tissues tested. 
The probe did not hybridize with host tissues of uninfected spiny lobsters, nor did it 
cross-react with other virus samples tested.

A primary culture of hemocytes was developed for in vitro study of PaVl. The 
modified Leibovitz L-15 medium supported the best survival of hemocytes in cultures. 
Hyalinocytes and semigranulocytes maintained higher viability (~ 80%) after 18 days 
when cultured separately. Hyalinocytes and semigranulocytes were susceptible to PaV 1 
in vitro. Cytopathic effects (CPE) were observed as early as 12 h post-inoculation, 
followed by cell debris and cellular exudates in inoculated cultures. This assay was 
further developed to assess viral load in hemolymph of diseased lobsters using a 50 % 
tissue culture infectious dose assay (TCID50) based on CPE.

These techniques were applied to study the infection dynamics o f the PaV 1 virus in 
tissues of the lobsters over time-courses of experimentally induced infections with PaVl. 
The fixed phagocytes in the hepatopancreas were the initial site o f PaV 1 infection in 
spiny lobsters. Infection was subsequently observed in the hepatopancreas, gill, heart, 
hindgut, glial cells around the ventral nerves, as well as in the cuticular epidermis and 
foregut. As the disease progressed, the hepatopancreas became significantly altered, with 
hemal sinuses filled with massive amounts of cellular aggregates, including infected 
circulating hemocytes and infected spongy connective tissues. The virus caused 
significant decreases in total hemocyte density in early infections and significantly 
altered several constituents in the hemolymph serum of diseased lobsters, including: 
glucose, phosphorus, triglycerides, and lipase.

The results of this study facilitate our understanding of the pathogenesis of the PaV 1 
in the lobster host.

xi
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GENERAL INTRODUCTION

Viral disease in the Caribbean spiny lobster

The Caribbean spiny lobster, Panulirus argus (Crustacea: Decapoda: Palinuridae) 

(Fig. 1 A) is widely distributed throughout the Caribbean basin and along the Atlantic 

Coast ranging from Brazil to Georgia, USA (Field and Butler, 1994). Spiny lobsters are 

important links in marine food webs, serving as major predators of various benthic 

species (e.g. snails, clams, and urchins) and important prey o f large predators (e.g. sharks 

and finfish) (Lipcius and Eggleston, 2000).

The spiny lobster has a complex life cycle (Fig. IB). It has five major life history 

stages, with adult, egg, phyllosoma larval stages, puerulus (or the post-larval stage) and 

juvenile stages (Phillips et al., 1980; Lipcius and Eggleston, 2000). The females bear 

eggs that hatch into phyllosoma in the spring and summer (Phillips and McWilliam, 

1986). The planktonic larvae change into postlarvae after molting 11 times over 6-12 

months. The postlarvae move onshore year around, settle in vegetation on shallow reef 

flats and metamorphose into the asocial early benthic juvenile stage (Lipcius and 

Eggleston, 2000). Once the juveniles reach approximately 15 mm in carapace length, 

they become social and take up refuge in crevices (Marx, 1986). Approximately two

2
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years after settlement, lobsters mature and migrate seaward to reefs where mating and 

spawning occur (Forcucci et al., 1994).

The Caribbean spiny lobster supports a valuable commercial fishery in Florida 

estimated at >$30 million/year ($500 million Caribbean-wide -  Cochrane and Chakalall, 

2001). It also supports an important recreational fishery, which now accounts for 22% of 

the total catch (Flarper, 1995; Butler, 2001). In Florida, for example, the commercial 

landings o f Caribbean spiny lobster have varied between 4.3 million pounds and 7.9 

million pounds per year from 1970 to 1999. In 1999, the total landings o f the spiny 

lobster decreased and by 2001 they had dropped to 3.4 million pounds, the lowest 

reported landings since 1982, approximately 45% less than the historical average 

landings (FMRI, 2005; Muller et al., 1997).

In 1999 and 2000, a pathogenic virus Panulirus argus Virus 1 (PaVl) (Fig. 2A) 

was discovered in juvenile Caribbean spiny lobsters (Shields and Behringer, 2004). PaVl 

is a large, non-enveloped, icosahedral, presumptive DNA virus with nucleocapsids 

ranging from 173 to 191 nm in diameter, and nucleoids approximately 118 ± 4 nm in 

diameter (Shields and Behringer, 2004). The virus primarily infects the small benthic 

juveniles (20 to 55 mm carapace length), with prevalence decreasing rapidly in larger 

sizes. The virus was prevalent throughout the Florida Keys with overall prevalences 

(among juveniles) ranging from 6% to 8%, with certain loci reaching as high as 37%. 

Because PaV 1 is widespread in the Keys and highly pathogenic to juvenile spiny lobsters, 

Shields and Behringer (2004) speculated that it might be responsible for the recent 

declines in lobster populations since 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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4

PaV 1 infects certain hemocytes (hyalinocytes and semi-granulocytes), and soft 

connective tissues in the hepatopancreas (digestive gland), hindgut (intestine), foregut 

(pyloric stomach), heart and elsewhere (Fig. 2B) (Shields and Behringer, 2004). However, 

the sites o f early infection and the progression of PaV 1 infection in the spiny lobster 

remain unknown. Heavily infected animals have characteristically milky hemolymph that 

does not clot (Shields and Behringer, 2004). This implies that there are pathological 

changes in the hemolymph such as an alteration in total hemocyte count (THC), 

differential hemocyte count (DHC), and serum constituents (total carbohydrate, total 

protein, hemocyanin, etc.) that are associated with viral load. Considering the 

catastrophic impact of shrimp viruses (see below) and their global spread, and the 

potential effect o f PaVl on the fishery for spiny lobsters, the development o f efficient 

diagnostic tools and the assessment of the infection dynamics of the virus are keys to 

determining if the virus is a significant threat to the industry.

Viral diseases in other crustaceans

Prior to 2004, no naturally occurring viruses had been reported from lobsters 

(Shields and Behringer, 2004). However, over 30 viruses have been reported to infect 

crustaceans, primarily shrimp. Since Couch (1974a, b) described the first recognized 

crustacean virus, Baculovirus penaei, in Penaeus duorarum from the Gulf o f Mexico, 

more than 20 viruses have been reported from penaeid shrimps (Brock and Lightner,

1990; Flegel, 1997; Lightner and Redman, 1998). At least 4 of these viruses are highly 

pathogenic and have severely damaged aquaculture stocks and, in some cases, fishery 

stocks o f shrimps (Brock and Lightner, 1990; Evans et al., 2000; Flegel, 1997). Viruses
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such as infectious hypodermal and hematopoietic necrosis virus (IHHNV) (Lightner et al., 

1983; Lu et al., 1989; Mari et al., 1993), Taura syndrome virus (TSV) (Lightner, 1995; 

Bonami et al., 1997; Mari et al, 1998), yellow head virus (YHV) (Wongteerasupaya et al., 

1995, 1997; Lightner, 1999), and white spot syndrome virus (WSSV) (Inouye et al., 1994; 

Cai et al., 1995; Wongteerasupaya et al., 1996; Lo et al., 1996; Wang et al., 1998; 

Lightner, 1999), have severely impacted aquaculture production, causing catastrophic 

losses to the shrimp farming industries in Asia and America (Lightner, 1999). Further, 

WSSY was accidentally introduced into the Americas where it has caused widespread 

damage to native and cultured shrimp stocks (Lightner, 1999). These introductions were 

thought to have occurred from infected brood stock and possibly from infected frozen 

carcasses.

Viruses have been reported from other crustacean species; however, they have not 

received as much attention as the shrimp viruses, primarily because o f the huge economic 

importance of the shrimp aquaculture industry. At least eight viruses have been reported 

from blue crab, Callinectes sapidus (see Shields and Overstreet, 2004 for review), of 

which four are known to be moderately or severely pathogenic. However, little is known 

about the effect o f these viruses on blue crab populations other than their implication in 

occasional mortalities in short-term holding pens or shedding facilities (Johnson, 1983). 

Viruses have also been identified in several other crab species; five viruses have been 

identified in European shore crabs, Carcinus maenas and Carcinus mediterraneus, three 

from the crab, Macropipus depur at or, one from the blue king crab Paralithodes 

plathypus, and one from the mud crab, Rhithropanopeus harrisi (see Brock and Lightner, 

1990; Bonami and Lightner, 1991 for review). Several other viruses are also known from
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diverse crustaceans including iridovirus infections in the ivory barnacle, Balanus 

eburneus (Leibovitz and Koulish, 1989), the pillbug, Armadillidium vulgare and the sow 

bug, Porcellio dilatatus (Federici, 1980).

PaVl shares some properties with the herpes-like virus (bi-facies Virus, BFV) 

from the blue crab, Callinectes sapidus (Johnson 1978, 1988), the herpes-like virus in the 

mud crab, Rhithropanopeus harrisi (Payen and Bonami 1979), and the herpes-like virus 

from the blue king crab, Paralithodes platypus (Sparks and Morado, 1986). All o f these 

virions are roughly similar in size, are icosahedral in shape, and are presumptive DNA 

viruses. PaVl even caused similar pathologic changes as the BFV. Both viruses infect 

hemocytes and connective tissue cells in various tissues; cause reduction in the number of 

hemocytes, and a milky appearance o f the hemolymph together with an abnormal clotting 

activity (Johnson, 1978, 1988; Shields and Behringer, 2004). However, PaVl is 

unenveloped, large and does not form inclusion bodies in the nuclei o f the infected cells 

(Shields and Behringer, 2004), distinguishing it from the Herpesviridae (Minson et al., 

2000).

PaV 1 is also similar to the iridoviruses such as irido-like virus (M dlLV) in the 

crab, Macropipus depurator (Montanie and Bonami, 1993) and the ivory barnacle, 

Balanus eburneus (Leibovitz and Koulish 1989), with respect to its size, shape, 

presumptive dsDNA, and lack o f envelope. However, PaVl virions are assembled 

entirely within the nucleus, whereas iridoviruses are assembled within the cytoplasm of 

host cells (Williams et al., 2000). As with most crustacean viruses, fundamental data (e.g. 

ultrastructure, DNA sequence, and capsid structure) necessary for the classification of 

PaV 1 are lacking, thus its family assignment remains to be determined.
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Application of in situ hybridization in study of viral diseases in crustaceans

In the past, diagnosis o f viral infections in crustaceans relied upon clinical signs 

of disease, histological examination and electron microscopy (Bell and Lightner, 1988; 

Brock and Lightner, 1990; Johnson, 1995). However, these methods are laborious or 

time-consuming, or have other limitations, such as the difficulty o f diagnosing disease 

from a large number o f samples using electron microscopy. Sometimes similar 

pathological signs can be caused by a number o f factors such as hypoxia, crowding, a 

sudden change in environmental factors, or even other pathogens, thus, reducing the 

capacity of certain diagnostic techniques to obtain a specific diagnosis (Lightner, 1988). 

In the past two decades, several molecular diagnostic methods have been developed as 

important diagnostic tools for viral pathogens of crustaceans. One such method is in situ 

hybridization (ISH), which detects specific types o f pathogens in cells and tissues by 

hybridization of a labeled gene probe to a unique nucleic acid sequence (Singer et al., 

1989).

ISH was initially developed to identify the genotype o f human embryos and 

genomic constitution of human pre-implantation embryos (Sart and Choo, 1998; 

Andreeff and Pinkel, 1999; Darby, 2000). Because of the problems associated with 

radioactive probes and the time required for autoradiography, nonradioactive in situ 

hybridization is now the preferred method (Singer et al., 1989; Sart & Choo, 1998). The 

improved nonradioactive technique is essentially a 2-3 day procedure that involves the 

stable labeling of the nucleic acid probe, an overnight hybridization of probe onto target, 

post-hybridization washes followed by fluorescent or enzyme-immunochemistry for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

8

hybrid molecule detection, and visualization of localized probes by fluorescent or light 

microscopy (Singer et al., 1989; Sart & Choo, 1998; Andreeff and Pinkel, 1999; Darby, 

2000).

Lately, ISH has been applied to the diagnosis of various viral diseases in penaeid 

shrimp (Lightner and Redman, 1998). The first gene probe to be used to diagnose a viral 

disease in a crustacean was developed to diagnose IHHNV (Mari et al., 1993). Small 

DNA fragments (dsDNA) were selected from libraries of cloned fragments o f IHHNV 

DNA, labeled with digoxigenin-11-dUTP (DIG) and applied to diagnosis o f IHHNV in 

histological sections. This technique led to the development of the first commercial 

diagnostic kit for crustacean viruses named ShrimProbes™ by DiagXotics (Wilton, CT, 

USA). Using specific gene probes, ISH has been subsequently applied to the diagnoses of 

several other crustacean viruses, such as Baculovirus penaei (BP) (Bruce et al, 1993, 

1994), WSSV (Lo et al., 1997; Nunan and Lightner, 1997; Chang et al., 1998), HPV 

(Pantoja and Lightner, 2001; Phromjai et a l ,  2002) and gill associated virus (GAV) 

(Spann et al., 2003).

ISH is a sensitive and specific method to confirm infections associated with 

specific pathogens. A DIG-labeled DNA probe used in the diagnosis of Baculovirus 

penaei was capable o f detecting the baculovirus well before the typical tetrahedral 

occlusion bodies (TOBs) were observable through routine tissue smears or histological 

examination (Bruce et al., 1993, 1994). The probes detected viral infections at 12-h post­

infection, whereas H&E histology required a minimum of 24 h for detection. Similarly, 

Chang et al. (1996) detected WSSV-positive cells at 16-h post infection in the stomach, 

gill, cuticular epidermis and hepatopancreas the shrimp, Penaeus monodon using a
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specific DIG-labeled DNA probe. More importantly, various mesodermally- and 

ectodermally-derived tissues, such as connective tissue, epithelia, nervous tissues and 

muscle, were also shown to be infected by the virus.

ISH has also been applied to diagnose pathogens in other marine organisms. A 

sensitive and specific DNA probe was developed and applied to diagnose the protozoan 

oyster pathogen Ha.plosporid.ium nelsoni (commonly called MSX) in the eastern oyster, 

Crassostrea virginica. The probe could detect 100 pg of cloned H. nelsoni rDNA and the 

presence of H. nelsoni in 1 pg o f genomic DNA from an infected oyster (Stokes and 

Burreson, 1995). Lipart and Renault (2002) developed two DNA probes that were 

specific to oyster herpes virus in Pacific oysters, Crassostrea gigas; the probes were able 

to detect 50 pg of viral DNA in Southern blot hybridizations. Carnegie et al. (2003) 

designed a fluorescent in situ hybridization (FISH) assay to detect the parasite Bonamia 

ostreae in the flat oyster Ostrea edulis. The characteristic green, ring-shaped fluorescence 

was observed inside infected hemocytes, reflecting specific binding of the parasites 

distinguished from the host tissue background.

In this study, I developed a FISH assay to detect PaV 1 infection in tissues o f the 

Caribbean spiny lobster. With this technique, I can identify the major tissues or sites of 

initial viral infection (early tissue tropisms), and the infection dynamics o f PaVl in early 

stage o f the disease.

Application of cell culture in the study of viral diseases in crustaceans

Crustacean cell lines are currently not available. However, in the past two decades, 

primary cell cultures have been obtained from various tissues and organs o f crustaceans,
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such as the lymphoid (oka) tissues (Tong and Miao, 1995; Hsu et al., 1995; Tapay et al., 

1997; Chen and Wang, 1999; Kasomchandra et al., 1999; Owens and Smith, 1999; West 

et al., 1999; Itami et al., 1999; Wang et al., 2000; Lang et al., 2002; Assavalapsakul et al., 

2003), embryonic tissues (Frerichs, 1996; Toullec et al., 1996; Fan and Wang, 2002), 

gonads (Luedeman and Lightner, 1992; Chen and Wang, 1999; Fraser and Hall, 1999; 

Owens and Smith, 1999; Lang et al., 2002; Maeda et al., 2004), heart (Tong and Miao, 

1996; Chen and Wang, 1999; Owens and Smith, 1999), nerve tissues (Nadala et al., 1993; 

Owens and Smith, 1999; Gao et al., 2003), gut (Nadala et al., 1993), hepatopancreas 

(Owens and Smith, 1999) and hemolymph (Sano, 1998; Walton & Smith, 1999; Itami et 

al., 1999).

O f the tissues tested in primary culture, embryonic or larval tissues show promise 

for developing cell lines, as they contain undifferentiated and mitotically active cells. 

Therefore, the use of embryonic cells to establish long-term cultures and to obtain cell 

lines has been attempted in several crustacean species including freshwater prawn, 

Macrobrachium rosenbergii (Frerichs, 1996), and various penaeid shrimps (Toullec et al., 

1996; Fan and Wang, 2002). Frerichs (1996) established subcultures of cells from the 

eggs o f M. rosenbergii at 7-13 days post-fertilization. Cells were observed to proliferate 

in primary culture, but their passage into fresh medium resulted in the loss o f adherence, 

cessation o f cell multiplication and consequent failure to establish. Toullec (1996) also 

failed to obtain cultures from cells from the embryos of Penaeus vannamei and P. indicus. 

The cultures stopped at the 16-cell stage, and differentiated into three cells types, 

fibroblast-like cells, nerve-like cells and contractile cells. Fan and Wang (2002) tested 

two growth factors, insulin-like growth factor (IGF-II) and basic fibroblast growth fact
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(bFGF) in primary cultures o f embryonic tissue o f Penaeus chinensis. They found that 

passage of primary cultures resulted in rapid proliferation and good adherence in the 

presence of IGF-II at 80 ng/ml and bFGF at 20 ng/ml. Cells maintained in subculture for 

up to 10 passages still had good cellular morphology and division rates. However, despite 

their efforts, only long-term primary cultures could be obtained.

Tissue culture is a standard tool employed in the diagnosis o f viral pathogens of 

vertebrates, but it has not been fully developed for assessment of viral infection in 

invertebrates (Rinkevich, 1999; Toullec, 1999; Villena, 2003). Currently, only primary 

culture techniques have been developed for propagation and analysis o f crustacean 

viruses. Lymphoid tissues are frequently applied in in vitro viral pathogenic studies, as 

these cells are often the targets for pathogenic viruses in shrimp (Lu et al., 1995; Tapay et 

al., 1997; Chen and Wang, 1999; Wang et al., 2000; Maeda et al. 2003; Assavalapsakul et 

al., 2003). Lu et al. (1995) developed a quantal assay for yellow head baculovirus (YBV) 

using primary cultures of shrimp lymphoid organ cells from two species of penaeid 

shrimp, P. stylirostris and P. vannamei. Visible cytopathic effects (CPE) appeared at 3 

days post-inoculation. A gill suspension from YHV-infected shrimp was determined to 

have an infectious virus titer of 5 x 105 75 TCID50 unit /ml. Tapay et al. (1997) used 

primary cultures of lymphoid organ to quantify a baculo-like virus isolated from P. 

japonicus and P. stylirostris using a TCID50 assay. The virus caused cytopathic effects at 

2 days post-infection; initially, the cells rounded up and finally detached from the culture 

vessels as the infection progressed.

Chen and Wang (1999) developed primary cultures o f ovary, heart, lymphoid 

tissue and peripheral hemocytes from three species o f penaeid shrimps P. monodon, P.
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japonicus, and P. penicillatus. They found that lymphoid tissues were better for the 

formation of confluent cell monolayers. Lymphoid tissues and ovary were subcultured up 

to three times and were maintained for at least 20 days. At 5-7 days after inoculation with 

WSSV or YHV, significant CPE was observed in cell monolayers derived from the 

lymphoid organ. Virions o f WSSV and YHV were observed in the nuclei and cytoplasm 

of cultured cells when examined by electron microscopy. Similar studies have also been 

carried out by Wang et al. (2000). CPE was first observed 2 days post-inoculation with 

WSSV filtrate. Hypertrophy of the nucleus, margination and diminution o f nuclear 

chromatin was associated with WSSV infections.

The propagation profile o f YHV was described using a primary culture of 

lymphoid organ and an in vitro quantal assay (TCID50) (50% tissue culture infectious 

dose) (Assavalapsakul et al., 2003). Virus was detectable by PCR as early as 24 h post­

inoculation. Maximal viral yields were reached by 4 days post-infection, approximately 

24 h after the onset o f the detectable cytopathic effects. The in vitro propagation of 

WSSV was studied in primary ovarian cultures from the kuruma shrimp Marsupenaeus 

japonicus (Maeda et al., 2004). WSSV caused marked cytopathic effect after 72 h post 

inoculation, followed by a rounding and detachment of most cells; the levels of WSSV in 

culture supernatant gradually increased during the period between 24 h and 120 h.

The PaVl virus infects certain hemocytes and soft connective tissues (Shields and 

Behringer, 2004), and causes a characteristically milky hemolymph. This implies that 

hemocytes and soft connective tissues are potential target tissues for the in vitro study of 

the virus. Connective tissues have not been successfully obtained in culture. However, 

primary cultures o f hemocytes have been obtained from the penaeid shrimp, Penaeus
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japonicus (Sano, 1998; Itami et al., 1999) and two species o f crab, Liocarcinus depurator 

and Carcinus maeuas (Walton and Smith, 1999). Sano (1998) cultured hemocytes from 

the kuruma shrimp P. japonicus and observed the unusual growth of pleomorphic cells in 

vitro. Itami et al. (1999) cultured granular hemocytes from P. japonicus for up to 10 days. 

Curiously, these hemocytes could not be infected by the penaeid rod-shaped DNA virus 

(RADY). Walton and Smith (1999) separated and collected hyaline hemocytes from the 

crabs, Liocarcinus depurator and Carcinus maenas. They were able to maintain these 

cells for up to 14 days with more than 70% viability in an optimized media.

In this study, I developed a primary culture o f the hemocytes from the spiny 

lobster, Panulirus argus for studies on the in vitro propagation of PaVl. I assessed the 

utility of an in vitro quantal assay (Reed and Muench, 1938; Dee and Shuler, 1997; 

LaBarre and Lowy, 2001) based on induced cytopathic effects (CPE). A quantal assay 

can be used to quantify the viral load in hemolymph and other host tissues.

Hematological responses of crustaceans to viral infections

Although crustaceans do not possess an inducible immune system with a high 

degree of specificity and memory as in vertebrates, crustaceans do have efficient means 

to protect themselves against potential pathogens (Soderhall and Cerenius, 1992; Roch,

1999). The external cuticle is an effective barrier that impedes the entry o f infectious 

agents as well as protecting internal soft tissues from mechanical damage (Sugumaran,

2000). Once pathogens gain entry into the host, subsequent innate host responses are 

activated, including non-self recognition, phagocytosis, coagulation and encapsulation. 

This latter response is mediated by the prophenoloxidase (proPO) system (Johansson and
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Soderhall, 1989; Soderhall and Cerenius, 1992; Kopacek et al., 1993; Vargas-Albores et 

al., 1996; Bachere, 2000; Lee and Soderhal, 2001; Theopold et al., 2004; Jiravanichpaisal 

et al., 2006). Most host innate responses against pathogens involve a combination of 

cellular defenses (e.g. phagocytosis and encapsulation) as well as constitutive humoral 

molecules (e.g. lectins and antimicrobial peptides) (Soderhall and Cerenius, 1992; 

Johansson and Soderhall, 1989; Relf et al., 1999; Bachere, 2000; Marques and Barracco, 

2000; Acharya et al., 2004; Alpuche et al., 2005; Kurtz, 2005; Jiravanichpaisal et al., 

2006).

Hemocytes of crustaceans play a key role in host innate responses against foreign 

invasion (Soderhall and Cerenius, 1992; Bachere, 2000; Jiravanichpaisal et al., 2006). 

Based on morphology, three types of circulating hemocytes are generally described in 

crustaceans: granulocytes, semi-granulocytes and hyalinocytes (Johnson, 1980; Bauchau, 

1981; Johansson et al., 2000; Jiravanichpaisal et al., 2006). Semi-granulocytes are 

responsible for encapsulation and have a limited function in the storage of proPO system 

(Soderhall and Cerenius, 1992; Johansson et al. 2000). This cell type is also capable of 

phagocytosis in several crustacean species (Hose et al., 1990). Granulocytes are the major 

storage cell in the proPO system and have a limited role in encapsulation (Hose and 

Martin, 1989; Hose et al., 1990; Soderhall and Cerenius, 1992; Johnsson et al. 2000). 

There is no consensus about the function o f hyalinocytes (or hyaline cells); hyalinocytes 

are capable o f phagocytosis in freshwater crayfish (Soderhall and Smith, 1983). However, 

hyalinocytes are not phagocytic in three other crustacean species; they play a significant 

role in clotting (Hose et al., 1990).
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Hemocytes can be infected by several types o f viruses in crustaceans. 

Granulocytes and semi-granulocytes are the targets for white spot syndrome virus 

(WSSV) infection in the shrimp P. merguiensis. Infection o f these cell types was thought 

to seriously damage the immune system of the shrimp due to destruction of immune 

mediation from those hemocytes (Wang et al., 2002). Significant reductions in total 

hemocyte counts (THC) were observed in the shrimp Penaeus indicus infected with 

WSSV (Yoganandhan et al., 2003). WSSV can infect granulocytes and semigranulocytes 

of the crayfish Pacifastacus leniusculus, and semigranulocytes are more susceptible to 

the virus; while the proportion of granulocytes was significantly elevated from days 3 to 

8 post-inoculation (Jiravanichpaisal et al., 2001). It is not clear whether the changes in 

hemocyte counts upon pathogen challenge can hamper the defense system of crustaceans 

(Jiravanichpaisal et al., 2006). In some cases, severe viral infection causes poor 

coagulation in the hemolymph of the blue crab Callinectes sapidus (Johnson 1976), the 

Caribbean spiny lobster P. argus (Shields and Behringer, 2004) and the shrimp P. 

vannamei (Song et al., 2003). However, it is not known how this lack o f clotting ability 

otherwise affects the defensive responses o f affected animals.

There have been a few studies on the biochemical changes that occur in the 

crustacean hosts with viral infection. Viral infections cause significant changes in 

biochemical and physiological parameters in hemolymph of crustaceans; and these may 

be associated with the host defense responses or they may result from pathological 

changes from infection. A significant decrease in hemocyanin content, and a significant 

increase in glucose and total carbohydrate levels occurs in the hemolymph of shrimp P. 

indicus infected with WSSV (Yoganandhan et al., 2003). Marked elevation in the
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activities of transaminases, alanine transaminase (ALT) and aspartate transaminase (AST) 

has also been observed in hemolymph of the shrimp P. indicus infected with WSSV 

(Mohankumar and Ramasamy, 2006 a). When challenged with Taura syndrome virus 

(TSV), hemocyanin and clottable proteins decreased significantly in hemolymph of the 

shrimp P. vanamei, and the generation of intra-hemocytic superoxide anion, O2" and 

plasma proPO activity increased significantly (Song et al., 2003). A significant decrease 

in the activities of the antioxidant enzymes in the hemolymph of the shrimp P. indicus 

was observed with the progression of WSSV infection (Mohanhumar and Ramasamy,

2006 b). The study of these parameters in the hemolymph of crustaceans complements 

histopathological studies on the health status o f crustacean host when challenged with 

viral pathogens.
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Figure 1. A: Caribbean spiny lobster (Panulirus argus) collected from the Florida Keys. 

B: Life cycle o f the Caribbean spiny lobster Panulirus argus (Lipcius and Eggleston, 

2000).
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Figure 2. A: Panulirus argus Virus 1 (PaVl) in the hepatopancreas of a heavily infected 

spiny lobster. Scale bar =100 pm. B: Internal anatomy of lobster.

(http ://www.maine .gov/dmr/rm/aquarium/teachers_guide/lobster_intemal_anatomy .j pg)
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GOALS AND OBJECTIVES

The overall goal of these studies was to determine the infection dynamics of 

Panulirus argus Virus 1 (PaVl) in the Caribbean spiny lobster, Panulirus argus. This 

was accomplished by examining the pathology and hematology of spiny lobsters 

experimentally infected with PaV 1 using molecular, cell culture and histological 

techniques. Individual portions o f this thesis were designed to address the following 

objectives:

Chapter 1.

To develop a fluorescence in situ hybridization (FISH) assay for diagnosis of PaV 1 

infections in tissues o f lobsters.

Hypothesis: PaVl has preferred target cells and specific tissue tropisms, which can 

be determined by histology and FISH.

Chapter 2.

1. To develop a primary culture o f the hemocytes from the Caribbean spiny 

lobster Panulirus argus.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

20

2. To assess the susceptibility o f the primary culture o f hemocytes from the spiny 

lobster to PaV 1 infection.

3. To quantify infectious dose o f PaV 1 in hemolymph of spiny lobsters infected 

with PaV 1.

Hypothesis: PaVl is infectious in vitro, causing infection and detectable cytopathic 

effects (CPE) to cultured hemocytes.

Chapter 3.

To study the pathology and hematology of the Caribbean spiny lobsters over a time 

course o f experimental infection by PaV 1.

Hypothesis

1) PaVl causes significant pathological changes in the spiny lobsters infected 

by PaV 1 that can be determined by histology and FISH.

2) PaV 1 infects the hemocytes causing demonstrable alterations to hemocyte 

subpopulations and hemolymph constituents that are related to the progression 

and severity of infection.
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CHAPTER 1

Detection of Panulirus argus virus 1 (PaV l) in the Caribbean spiny lobster using 
fluorescence in situ hybridization (FISH)

Published:

Li, C., Shields, J.D., Small, H.J., Reece, K. S., Hartwig, C.L., Cooper, R.A., Ratzlaff, 
R.E., 2006. Diagnosis of Panulirus argus virus 1 (PaVl) in the Caribbean spiny lobster 
using fluorescence in situ hybridization. Diseases of Aquatic Organisms 72, 185-192.
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MANUSCRIPT ABSTRACT

Panulirus argus virus 1 (PaVl) is the first virus known to be pathogenic to a wild 

lobster. It infects the Caribbean spiny lobster, Panulirus argus from the Florida Keys, 

and has a predilection for juveniles. The monitoring of the virus in wild populations and 

study of its behavior in the laboratory require the development o f reliable diagnostic tools. 

A sensitive and specific fluorescence in situ hybridization (FISH) assay was developed 

for detection of PaVl. The lower detection limit using a 110-bp DNA probe in a dot-blot 

hybridization for PaVl DNA was 10 pg o f cloned template PaVl DNA and 10 ng of 

genomic DNA extracted from hemolymph of diseased spiny lobster. The fluorescein 

(FITC)-labeled probe specifically hybridized to PaVl-infected cells in hepatopancreas, 

hindgut, gills, heart, foregut, and nerve tissues. FITC staining was observed around the 

inner periphery o f the nuclear membrane, with lighter staining in a more dispersed pattern 

within the nucleus. The probe did not hybridize with host tissues of uninfected spiny 

lobsters, nor did it cross-react with the four other virus samples tested. This assay will 

facilitate our understanding of the pathogenesis o f the viral disease and help in 

monitoring efforts directed at determining the prevalence of PaVl in juvenile nurseries 

for the lobster.
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INTRODUCTION

Panulirus argus Vims 1 (PaVl) causes disease in juvenile Caribbean spiny 

lobsters from the Florida Keys (Shields & Behringer 2004). It is a large, non-enveloped, 

icosahedral, presumptive DNA vims with nucleocapsids ranging from 173 to 191 nm in 

diameter, and nucleoids approximately 118 ± 4 nm in diameter. The vims infects 

certain hemocytes (hyalinocytes and semi-granulocytes) and spongy connective tissues 

(Shields & Behringer 2004). Infected cells have a characteristic appearance with 

emarginated condensed chromatin, hypertrophied nuclei and faint eosinophilic inclusions. 

Because PaVl is widespread in the Florida Keys and is highly pathogenic to juvenile 

spiny lobsters, Shields and Behringer (2004) speculated that it may be responsible for 

recent declines in lobster populations since 1999. However, their study relied on 

histology and visual diagnosis, which may fail to identify low grade, latent or subclinical 

infections. Until now, there have been no molecular tools for diagnosis of PaVl 

infections.

Diagnosis of viral infections in crustaceans has traditionally relied on clinical signs 

of disease, histological examination and electron microscopy (Bell & Lightner 1988, 

Brock & Lightner 1990, Johnson & Cassout 1995). Lately, more sensitive, specific and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

24

rapid molecular techniques have been developed as important diagnostic tools for viral 

pathogens o f crustaceans (e.g., Lightner & Redman 1998). One such method is in situ 

hybridization (ISH), which detects specific nucleic acid sequences in cells and tissues by 

hybridization of a labeled gene probe to a specific target nucleic acid sequence (Singer et 

al. 1989). ISH has been subsequently applied to diagnosis o f several crustacean viruses, 

such as Baculoviruspenaei (BP) (Bruce et al. 1993, 1994), white spot syndrome virus 

(WSSV) (Durand et al. 1996, Lo et al. 1997, Nunan & Lightner 1997, Chang et al. 1998), 

hepatopancreatic parvovirus (HPV) (Pantoja & Lightner 2001, Phromjai et al. 2002) and 

gill-associated virus (GAV) (Spann et al. 2003). ISH has also been applied to the 

diagnosis o f several other pathogens of marine organisms (Stokes & Burreson 1995, 

Chang et al. 1996, Lo et al. 1997, Pantoja & Lightner 2001, Carnegie et al. 2003, Small et 

al. 2006). It is a useful tool to detect the presence of virions in infected tissues and 

determine tissue tropism of viral infections in hosts. Therefore, the objective of this study 

was to develop a fluorescence in situ hybridization (FISH) assay for the diagnosis of 

PaV 1 infections in lobsters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

MATERIALS AND METHODS

Sample collection

Juvenile spiny lobsters, Panulirus argus, were collected from several sites 

located throughout the Florida Keys, USA. Tissue samples of hepatopancreas, 

hindgut, foregut, gill, heart, skin, nerve and in some cases ovary were dissected and 

fixed in 10 % neutral buffered formalin for approximately 48 h and then held in 70 % 

EtOH until further processing. Fixed tissues were dehydrated, embedded in paraffin 

and sectioned at 5 pm thickness on a rotary microtome. To verify the presence of the 

virus, sections were stained with hematoxylin and eosin (H&E) for histology 

(Humason 1979); infections were further confirmed by transmission electron 

microscopy (TEM) (Shields & Behringer 2004). Sections from the same tissue blocks 

were placed onto positively charged slides (Fisher Scientific) for fluorescence in situ 

hybridization (see below).

Fluorescent DNA probe synthesis

A 110-bp DNA probe was derived from a 177-bp DNA fragment (GenBank 

accession No. DQ465025) that putatively codes for a portion of the DNA polymerase 

from PaVl (Robert Ratzlaff, unpublished data). The 110-bp DNA probe (PaVl 110) 

containing fluorescein-12-dUTP (fluorescein isothiocyanate, FITC) was synthesized
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using a PCR Fluorescein Labeling Mix (Roche Applied Science). A plasmid vector 

(pCR 4-TOPO) containing the 177-bp DNA fragment was used as a template for probe 

synthesis. A specific primer set (PaVl 110F/R, generated with Invitrogen 

OligoPerfect™ Designer) was used to amplify and label a 110-bp fragment from the 

plasmid DNA containing the 177-bp insert. (See Table 1 for sequence of the 110-bp 

DNA probe and location of the PaV 1110 F/R primer set.) The polymerase chain 

reaction (PCR)-labeling reaction was performed according to the manufacturer’s 

instructions (Roche Applied Science). Briefly, each PCR reaction contained the 

following: PCR buffer at a 1 x concentration, 4 mM MgCfe, 200 pM PCR Fluorescein 

Labeling Mix dNTP, 0.5 pM of each primer, 1 unit Taq DNA polymerase, 100 pg 

plasmid template, and distilled water (dFLO) to a final volume of 100 pi. 

Thermocycling conditions were as follows: an initial denaturation at 94°C for 4 min; 35 

cycles of denaturation at 94°C for 30 seconds, annealing at 57.2°C for 30 seconds, and 

extension at 72°C for 90 seconds; followed by final extension at 72°C for 5 min. PCR 

products were purified using a QIAquick spin purification kit (Qiagen), and were 

visualized by agarose gel electrophoresis (2 %) with ethidium bromide staining. The 

amount of DNA was quantified using a Hoefer DyNA Quant200 Fluorometer.

To ensure that the PaVl 110F/R primer set was amplifying the correct 

domain of the viral 177-bp insert for synthesis of the 110-bp DNA probe, the PCR 

(above) was repeated with the Fluorescein labeling mix replaced with a standard 

dNTP mix (125 pM). The 110-bp product was visualized by agarose gel 

electrophoresis and excised from the gel using a sterile scalpel and purified using a
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QIA-quick gel extraction kit (Qiagen). The amplicon was cloned using a TOPO TA 

Cloning Kit for Sequencing (Invitrogen) following the manufacturers protocols. Six 

clones were sequenced bidirectionally and analyzed using an ABI 3130 Prism Genetic 

Analyzer (Applied Biosystems) as in Dungan & Reece (2006). Sequences were 

compared to the original 177-bp fragment using the Clustal-W algorithm in the 

MacVector DNA sequence analysis package (Accelrys).

DNA probe sensitivity

The sensitivity of the probe was determined by dot-blot hybridization against a 

10-fold serial dilution from 10 ng to 1 pg of plasmid DNA containing the PaVl 

177-bp fragment. Additional controls consisted of 10 ng genomic DNA extracted 

from hemolymph of a healthy spiny lobster and 10 ng genomic DNA extracted from 

the hemolymph of a spiny lobster heavily infected with PaV 1 (Infection was 

determined histologically). Genomic DNA was extracted using the DNeasy® Tissue 

kit according to the manufacturer’s instructions (Animal blood protocol - Qiagen). 

Briefly, DNA solutions were denatured at 100°C for 10 min and transferred to ice for 

5 min. The solution of denatured DNA was loaded onto a positively charged 

membrane (BrightStar®-Plus, Ambion) using a Bio-Rad Microfiltration Apparatus 

(Bio-Rad laboratories), and rinsed with 100 pi of 0.4 M NaOH. DNA was 

immobilized by UV crosslinking with a Stratalinker 1800 UV crosslinker (Stratagene). 

The membrane was placed in a sealed plastic bag containing pre-warmed (42°C) 

pre-hybridization solution (Sigma-Aldrich) and incubated for 30 min with gentle
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agitation at room temperature (RT, 25°C). FITC-labeled probe was denatured as 

described above, diluted in hybridization buffer (Sigma-Aldrich) to a final 

concentration of 10 ng ml'1, and incubated with membranes in a sealed plastic bag 

overnight at 42°C with gentle agitation. A series of stringency washes followed: 2x 

SSC (0.3 M NaCl, 30 mM Sodium Citrate; pH 7.0), 10 min, RT; lx SSC, 10 min, RT 

and 0.1 x SSC, 10 min, RT. The membrane was blocked for 30 min at RT with 

blocking buffer (Sigma-Aldrich), then incubated in anti-fluorescein alkaline 

phosphatase antibody (1:1000 diluted in blocking buffer) (Sigma-Aldrich) for 2 h 

with gentle agitation at RT. This was followed by removal of unbound antibody with 

two 15 min washes with TN buffer (0.1M Tris, 0.15 M NaCl, pH 7.5) and a 5 min 

wash with TNM buffer (0.1 M Tris, 0.1 M NaCl, 0.05 M MgCl2, pH 9.5). The 

membrane was then incubated with BCIP/NBT liquid substrate solution 

(Sigma-Aldrich) for 2 h in a sealed plastic bag covered with foil. Color development 

was stopped with a 5-min TE buffer wash (10 mM Tris, ImM EDTA, pH 7.5) and 

dH20  for 5 min. The wet membrane was scanned with a Hewlett Packard Scanjet 

3570c scanner for documentation.

Fluorescence in situ hybridization (FISH)

The FISH methodology was derived from published ISH protocols (Singer et al. 

1989, Stokes & Burreson 1995, Darby 2000, Beatty et al. 2002). Sections were 

deparaffmized in xylene (5 min, 2x), rehydrated through a descending ethanol series: 

100 % (5 min, 2x), 95 % (1 min, 2x), 70 % (1 min, 2x), and equilibrated in
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phosphate-buffered saline (PBS; once for 5 min, once for 3 min). The sections were 

then digested with Proteinase K (100 pg ml'1 in PBS) for 15 min at 37°C, followed by a 

5-min wash in 0.2 % glycine PBS solution to stop proteolysis, and incubated in 2x SSC 

for 10 min at room temperature. Slides were incubated in pre-hybridization buffer (4* 

SSC, 50 % formamide, 0.5 mg ml'1 Salmon sperm DNA, and 1 % fetal bovine serum) at 

42°C for 45 min. After incubation, excess pre-hybridization buffer was carefully 

drained off, the area with tissue was outlined with a Frame-seal incubation chamber 

(MJ Research), aliquots of 50 pi of hybridization solution (50 % deionized formamide, 

4* SSC, 0.5 % SDS, and 25 pg ml'1 DNA fluorescein probe) were added, and the slides 

sealed with a plastic cover slip. The slides were then placed in a thermal cycler for 3 

min at 72°C and cooled on ice for 2 min. Slides were incubated in a humid chamber 

saturated with prehybridization buffer overnight at 42°C. The slides were then washed 

in 2x SSC (5 min), 1* SSC (5 min), PBS (10 min), air dried, mounted with anti-fading 

mounting medium (90 % glycerol, 0.1 m Tris-HCl, pH 8.0 and 2.3 % DABCO) and 

covered with glass coverslips. Clear fingernail polish was applied to the edges of the 

cover slips to prevent evaporation. Slides were examined using an Olympus BX51 

microscope equipped with a FITC-Texas Red filter (U-MF2, Olympus), and images 

were captured with a Nikon DXM 1200 digital camera for comparison between 

matching sections stained with H&E.

To test the specificity of the probe, tissues with other viral infections were 

assessed. These included tissues with a herpes-like virus (HLV) from a blue king crab 

Paralithodes platypus obtained from Frank Morado (NOAA) (see Sparks & Morado
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1986); lymphocystis disease virus (LDV) from a striped bass Morone saxatilis, 

obtained from Wolfgang Vogelbein (VIMS) (see Smail & Munro 2001 for review); 

Ostreid Herpesvirus 1 (OsHV-1) from an infected Pacific oyster Crassostrea gigas, 

obtained from Carolyn Friedman (Univ. Washington) (see Le Deuff & Renault 1999, 

Lipart & Renault 2002) and Intranuclear bacilliform virus (IBV) from an infected 

brown shrimp Crangon crangon from Grant Stentiford (CEFAS, UK) (Stentiford et al. 

2004).

TEM

The hepatopancreas from an infected lobster was fixed for transmission 

electron microscopy (TEM) using 3 % glutaraldehyde (containing 0.2 M sodium 

cacodylate, 30 mg ml'1 NaCl, 20 ug ml'1 CaCl2, pH 7.0) (Factor & Naar 1985). After 

fixation, tissues were washed 3 times in buffer and postfixed in 1 % osmium tetroxide 

in buffer. Samples were processed through an ethanol dehydration, en bloc stained with 

uranyl acetate, dehydrated further with propylene oxide, infiltrated through several 

changes of propylene oxide in various ratios with Spurr’s resin, and finally embedded 

in Spurr’s resin. Sections were cut on a Reichert-Jung ultramicrotome E, processed 

through a routine lead citrate stain, and observed with a Zeiss CEM-902 TEM.
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RESULTS

DNA probe synthesis and sensitivity

The primer pair PaVl 110 F/R specifically amplified a single 110-bp 

fragment (Table 1) when using the plasmid containing the 177-bp DNA fragment as 

a template in the PCR labeling reaction. The 110-bp DNA probe sequence from 6 

clones sequenced was 100 % identical to the corresponding region in the original 

177-bp plasmid.

In dot-blot hybridizations (Fig. 1), the probe had a minimum sensitivity of 10 

pg of the cloned plasmid DNA with the 177-bp insert. Additionally, the probe 

detected the presence of viral DNA from 10 ng of genomic DNA extracted from 

hemolymph of a PaVl infected spiny lobster. A negative result was obtained when 

the probe was tested with genomic DNA extracted from the hemolymph of a healthy 

spiny lobster (Fig. 1, g).

Fluorescence in situ hybridization

The FITC-labeled probe hybridized to PaVl-infected cells in all tissues 

tested. The probe bound to those infected hemocytes and spongy connective tissue 

cells in or around the hepatopancreas, hindgut, foregut, gill, heart, skin, nerve and 

even ovary tissues (Fig. 2 A, B, C). The distribution of FITC-stained structures
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inside infected cells matched the pathological changes caused by the viral infection 

when diagnosed by H & E staining (Fig. 3) and TEM (Fig. 4). Most FITC-stained foci 

were located around the inner periphery of the hypertrophied nuclear membrane, with 

a few dispersed throughout the inside of the nucleus.

The probe did not bind to the tissues of healthy spiny lobsters. No 

FITC-stained particles were present in tissues from healthy spiny lobsters. Only a 

weak brown/red background was observed (Fig. 2 D). The probe did not hybridize 

with HLV, OsHV-1, LDV, nor with IBV.
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DISCUSSION

We have developed a FISH assay for the detection of the recently identified 

PaVl virus from the Caribbean spiny lobster, Panulirus argus, using a sensitive and 

specific DNA probe. The probe detected 10 pg of plasmid DNA containing a 177-bp 

DNA fragment from PaV 1 in a dot-blot hybridization. It could detect the presence of 

viral DNA in 10 ng genomic DNA extracted from the hemolymph of a diseased 

spiny lobster. The probe hybridized to PaVl-infected cells in all tissues tested by 

FISH. The specific binding of the 110-bp probe for PaVl was visualized as ring-like 

green staining of infected cells, whereas only a brown or red background was 

observed in healthy tissues from uninfected spiny lobsters. This unique distribution 

pattern of the green staining fits the pattern observed in infected tissue with TEM. 

Most virions were diffusely distributed within the inner periphery of the 

hypertrophied nuclei of infected cells, and the probe specifically bound to 

complementary sequence of viral DNA in infected cells during in situ hybridization.

Traditional diagnostic tools such as histology or electron microscopy can not 

differentiate among certain etiologies. Occasionally, similar pathological signs can 

be caused by several factors including hypoxia, crowding, a sudden change in 

environmental factors, or even other pathogens, thus, reducing the capacity of 

certain diagnostic techniques to obtain a specific diagnosis (Lightner 1988). When
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examined by TEM, PaV 1 had properties similar to the Herpesviridae and the 

Iridoviridae (Shields & Behringer 2004). It even induces pathological changes similar 

to those caused by the herpes-like virus (Bi-Facies virus, BFV) from the blue crab, 

Callinectes sapidus (Johnson 1976, 1988; Shields & Behringer 2004). However, the 

110-bp probe did not bind with the other viruses: OsHV (Le Deuff & Renault 1999, 

Lipart & Renault 2002), HLV (Sparks & Morado 1986), LDV (Smail & Munro 2001) 

and a virus outside these families, the bacilliform virus (Stentiford et al. 2004). 

Therefore, the specificity of the probe will facilitate its use in properly diagnosing 

PaV 1 infections in lobsters.

In situ hybridization (ISH) has been applied to diagnose viral diseases in 

several crustaceans (Lightner & Redman 1998). A digoxigenin (DIG)-labeled DNA 

probe used in the diagnosis of Baculoviruspenaei detected the baculovirus well 

before the typical tetrahedral occlusion bodies (TOBs) were observable in routine 

tissue smears or histological examinations (Bruce et al. 1993, 1994). The probe 

detected viral infections at 12-h post-infection, whereas H&E histology required a 

minimum of 24 h for detection. Similarly, Chang et al. (1996) detected 

WSSV-positive cells at 16-h post infection in the stomach, gill, cuticular epidermis 

and hepatopancreas of the shrimp Penaeus monodon using a specific DIG-labeled 

DNA probe. While we have not examined the infection dynamics of PaVl over such 

short time periods, the specific binding of the 110-bp probe, coupled with the 

excitation sensitivity of FITC to fluorescence, should facilitate examining viral 

tropism over periods of a few days post inoculation.
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Using H&E and FISH, we found infected cells in the ovaries of an infected 

lobster. Most of these cells were circulating hemocytes or spongy connective tissue 

cells; oocytes did not appear to be infected by the virus. Lo et al. (1997) reported that 

WSSV can infect oocytes in the ovary of the shrimp Penaeus monodon. However, 

infected oocytes were unable to develop into mature ova; therefore, WSSV was 

unlikely be transmitted to offspring. In our case, infected juvenile lobsters are not 

likely to survive to reproduce as they typically die within 30-80 d after infection 

(Shields & Behringer 2004). Further, whereas adults can become infected by PaVl, 

the prevalence in adults is extremely low (Shields & Behringer 2004); therefore, 

transovarial transmission is unlikely to play a major role in the spread of the virus. 

Given the sensitivity of the 110-bp PaVl probe and its apparent specificity, this FISH 

assay is a powerful tool for detecting the presence of PaVl virions in host tissues. 

With this technique we can identify the major tissues involved in infections and the 

initial sites of viral infection, investigate other hosts as reservoirs for the virus, and 

monitor disease prevalence in nursery populations of P. argus in the Caribbean Sea.
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Table 1. Sequence of the 110-bp DNA probe from PaVl and location of the PaVl 110 

F/R primer set (bold).
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1 CTCGGTGTAT GGGTTTACGG GGGTGACGAA

41 GGCTTCGAAC CCGTCGCGGC GAGCATCACC

81 GACAGTCCGT GCTGAAGGCG AAGAAACACT

AAAGGCCATC

GCCGTGGGGC
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Figure 1. Dot blot hybridization with the 110-bp PaVl probe. Left row of each dot 

blot a, b, c, d, e, f  is 10 ng, lng, 100 pg, 10 pg, 1 pg, 0.1 pg of plasmid DNA 

containing the 177-bp fragment, respectively. Right row of dot blot, g is 10 ng 

genomic DNA from hemolymph of healthy lobster; h is  10 ng genomic DNA from 

hemolymph from lobster that was infected with PaVl.
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Figure 2. FISH using the PaVl 110-bp probe on histological sections of spiny lobster 

infected with PaVl (scale bars = 50 pm). A: hepatopancreas, B: spongy connective 

tissue around foregut, C: ovary, D: hepatopancreas from a healthy spiny lobster. 

Green staining indicates specific binding of the PaVl 110-bp probe to viral nucleic 

acids in infected cells, brown or yellow signal indicates background.
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Figure 3. (A) FISH image of the hepatopancreas of a lobster infected with PaV l. Note 

the green staining of the virally infected hemocytes by the PaV 1 110-bp probe (white 

arrows), scale bar = 20 pm. (B) H&E staining of the hepatopancreas of an infected 

lobster. Infected cells exhibit hypertrophied nuclei, and faint eosinophilic inclusions. 

Black arrows indicate infected hemocytes, scale bar = 20 pm.
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Figure 4. A, B. TEM of hepatopancreas from an infected lobster; virions (V) 

aggregated at inner periphery of the nuclear membrane, with a few dispersed inside 

the nucleus. Notice the condensed and emarginated chromatin (E), scale bars = 2 pm.
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CHAPTER 2

Primary culture of hemocytes from the Caribbean spiny lobster, Panulirus argus, and 
their susceptibility to Panulirus argus Virus 1 (PaVl)

Published:

Li, C., Shields, J. D., 2007. Primary culture of hemocytes from the Caribbean spiny 
lobster, Panulirus argus, and their susceptibility to Panulirus argus Virus 1 (PaVl). 
Journal of Invertebrate Pathology 94,48-55.
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MANUSCRIPT ABSTRACT

Primary cultures of hemocytes from the Caribbean spiny lobster Panulirus argus 

were developed for studies on the in vitro propagation of Panulirus argus Virus 1 (PaVl). 

A modified Leibovitz L-15 medium supported the best survival o f hemocytes in in vitro 

primary cultures. However, degradation o f the cultures occurred rapidly in the presence 

of granulocytes. A Percoll step gradient was used to separate hemocytes into three 

subpopulations enriched in hyalinocytes, semigranulocytes, and granulocytes, 

respectively. When cultured separately, hyalinocytes and semigranulocytes maintained 

higher viability (~ 80%) after 18 days incubation compared with granulocytes, which 

degraded over 2-3 days. Susceptibility of the cell types was investigated in challenge 

studies with PaVl. Hyalinocytes and semigranulocytes were susceptible to PaVl. 

Cytopathic effects (CPE) were observed as early as 12 h post-inoculation, and as the 

infection progressed, CPE became more apparent, with cell debris and cellular exudates 

present in inoculated cultures. Cell lysis was noticeable within 24 hrs of infection. The 

presence of virus within cells was further confirmed by in situ hybridization using a 

specific DNA probe. The probe gave a unique staining pattern to cells infected with 

PaV 1 24-h post inoculation. Cells in the control treatment were intact and negative to 

hybridization. This assay was further applied to the quantification of infectious virus in 

hemolymph using a modified 50% tissue culture infectious dose assay (TCID50) based on
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CPE. These tools will now allow the quantification of PaVl using established culture- 

based methods.
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INTRODUCTION

The Caribbean spiny lobster, Panulirus argus, is widely distributed throughout 

the Caribbean basin and along the Atlantic Coast ranging from Brazil to Georgia, USA. It 

supports one of the most valuable fisheries in the Caribbean. Recently, a pathogenic virus, 

Panulirus argus Virus l(PaV l), was identified during field surveys o f juvenile lobsters 

from the Florida Keys (Shields & Behringer, 2004). The virus infects the soft connective 

tissues, and two classes of hemocytes: hyalinocytes and semigranulocytes. The virus is 

highly pathogenic to juvenile spiny lobsters, which die within 30-80 days in 

experimentally induced infections (Shields and Behringer, 2004). Healthy lobsters are, 

however, able to detect diseased animals and avoid them (Behringer et al., 2006). Given 

its distribution throughout the Florida Keys and its relatively high prevalence in juvenile 

lobsters, PaVl is thought to have significant potential to damage the fishery. Thus, it is 

critical to develop specific and sensitive diagnostic methods to better understand the 

pathogenesis of this viral pathogen.

Tissue culture is an important tool employed in the studies o f viral pathogens o f  

vertebrates, but it has not been fully developed for assessment o f viral infection in 

invertebrates (Rinkevich, 1999; Toullec, 1999; Villena, 2003). A t present there is no  

continuous culture o f crustacean cell lines, however, primary culture o f crustacean tissue 

has previously been developed for the diagnosis and in vitro proliferation o f  shrimp 

viruses (Chen and Wang, 1999; Fraser and Hall, 1999; Frerichs, 1996; Hsu et al., 1995;
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Nadala et al., 1993; Rinkevich, 1999; Tapay et al., 1997; Toullec, 1996). Because PaVl 

infects hyalinocytes, semigranulocytes, and soft connective tissues (Shields and 

Behringer, 2004), these hemocytes and soft connective tissues represent targets for the in 

vitro study of the virus. Connective tissues have not been successfully obtained in culture. 

However, primary cultures of hemocytes have been obtained from the penaeid shrimp, 

Penaeus japonicus (Itami et al., 1999; Sano, 1998) and two species of crab, Liocarcinus 

depurator and Carcinus maenas (Walton and Smith, 1999). The present study aimed to 

develop a primary culture o f the hemocytes from the spiny lobster, Panulirus argus, and 

to assess the susceptibility of hemocytes to PaVl in these cultures. The cell culture 

system with the virus was further developed into an in vitro assay for the quantification 

of virus in the hemolymph of infected lobsters.
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MATERIALS AND METHODS

Experimental animals

Juvenile spiny lobsters, Panulirus argus, were collected from the Florida Keys, and 

housed in clean aquaria (salinity = 35 ± l% o , temperature = 24 ± 1 °C) equipped with 

biological filters (Whisper) filled with crushed coral. Lobsters were fed with squid three 

times per week. Water quality was monitored weekly and water changes were made to 

ensure that various water quality parameters remained within acceptable limits: ammonia 

(0-0.3 ppm), nitrite (0-0.6 ppm), pH (7.4-8.4).

Analysis of Panulirus argus hemocytes

Hemolymph was drawn with a 27-ga syringe from the juncture between the base and 

ischium of the fifth walking leg. Prior to bleeding, the sample area was wiped with 70% 

ethanol. In most cases, hemolymph was collected into a syringe containing an equal 

volume of anticoagulant (0.45M NaCl, 0.1M glucose, 30mM sodium citrate, 26mM citric 

acid, lOmM EDTA; pH = 5.4; Soderhall and Smith, 1983). Freshly collected hemocytes 

were examined with an Olympus BX51 microscope equipped with a U-UCD8 Universal 

condenser and Nomarski Differential Interference Contrast Filter. Hemocytes were 

categorized based on cell size, cell shape, and granularity (Soderhall and Cerenius, 1992). 

Total hemocyte counts (THC) and differential hemocyte counts (DHC) were performed 

using a hemacytometer (Neubauer improved, Bright Line; two counts per lobster).
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Optimization of culture media

Samples o f collected hemolymph were centrifuged at 250 x g for 10 min at 4 °C 

(IEC Thermo Centra, with swinging bucket rotor), then resuspended in appropriate 

medium. Aliquots of 0.5 ml of the hemocyte suspension at densities of ~1 x 106m r' 

were seeded into 24-well culture plates containing an additional 1.0 ml of culture medium 

per well. Plates were incubated in a Chamber (Lab-Line®) at 22 -  24 °C. Media were 

refreshed on day 2 and thereafter at 2-day intervals. Cultured cells were observed with an 

Olympus 1X50 inverted microscope equipped with a Hoffman Modulation Contrast 

condenser. Images were taken with a Nikon DXM 1200 digital camera at days 1, 3, 5, 7,

9, and 11, prior to media refreshment. Cell viability was confirmed by the Trypan Blue 

exclusion method (Mascotti et al., 2000). Several commercial media were assessed for 

hemocyte viability: Leibovitz L-15 medium (L-15), Modified Leibovitz L-15 medium 

(ML-15: double strength components, supplemented with 0.6 g L '1 L-glutamine and 0.7 

gL'1 glucose), Grace’s insect medium, and RPMI-1640 medium. Each medium was 

adjusted to match the osmolarity o f the hemolymph of the spiny lobster (1025 ± 6 mOsM 

kg'1) by addition o f NaCl. Penicillin (100 IU m l'1) and streptomycin (100 pg m l'1) were 

added to each culture medium to minimize potential bacterial contamination. In addition, 

some media were supplemented with 0%, 5%, 10%, or 15% charcoal-dextran-treated 

fetal bovine serum (FBS) for putative growth assessment. All media were sterilized by 

filtering through Nalgene® Disposable Filters (Pore size = 0.20 pm).

Primary culture of separated hemocytes
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Hemocytes were separated by centrifugation using Percoll (Amersham Biosciences) 

in fine step-density gradients (1.110, 1.096, 1.091, 1.086, 1.082, 1.077, 1.072, 1.067, and 

1.062 g m l'1 respectively) made with lobster physiological buffer (0.4M NaCl, 0.01M 

KC1, 0.01M Na2H P04, 0.01M KH2P 0 4, NaHC03; pH -  7.8). Briefly, 1 ml o f each 

density solution was carefully layered into the samel5-ml centrifuge tube. Aliquots of 3 

ml of the hemolymph-anticoagulant suspensions were gently layered on the top o f the 

stacked gradients, then centrifuged at 400 x g for 30 min at 4 °C. Cell fractions were 

carefully aspirated into anticoagulant using Pasteur pipettes, and washed twice with 

culture media. Cell fractions were centrifuged at 250 x g for 10 min at 4 °C to remove 

residual Percoll prior to resuspension in fresh culture media. Separated hemocytes were 

cultured in the optimized media and assessed for cell viability as above.

Virus inoculation of cell cultures

The virus inoculum was extracted from the hemolymph of a heavily diseased lobster. 

Briefly, diseased hemolymph was mixed with 4-fold volume of ML-15 medium and 

homogenized with a homogenizer (Pyrex®, Coming Inc.) at 4 °C for 10 min, the 

homogenized mixture was centrifuged at 3000 * g for 10 min at 4° C, and the 

supernatant was filtered through 0.45-pm filter. Viral filtrates were serially diluted with 

ML-15 culture medium to 1:1, 1:10, 1:100 and 1:1000 and used as inoculum.

Hemolymph from a healthy lobster was processed similarly and used as a control.

Aliquots of 100 pi of inoculum were inoculated into 1 day old established hemocyte 

cultures in 24-well tissue culture plates (Falcon®, Becton Dickinson Labware), the plates 

were incubated at 22 -  24 °C for 4 days, and cultures were supplemented with new media
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at 2-day intervals. The inoculated primary cultures were examined daily with an inverted 

microscope, and images were taken daily for assessment of cytopathic effects (CPE) and 

calculation of 50% tissue culture infectious dose (TCID50) as in Reed and Muench (1938).

Diagnosis of in vitro infection of PaVl by in situ hybridization (ISH)

For diagnosis o f in vitro infections of PaVl, hemocytes were cultured and inoculated 

with 1:10 diluted inoculum in chamber slides (Lab-Tek®). On days 1, 2, 3 and 4 post 

inoculation, hemocytes cultured in chambers were fixed in 10% neutral buffered formalin 

for 10 min at room temperature, and then gently rinsed briefly with phosphate buffered 

saline (PBS) (8.0 g L '1 NaCl, 0.2 g L '1 KC1,1.44 g L '1 Na2H P04, 0.24 g L '1 KH2P 0 4; pH 

7.4). Infections were then prepared for in situ hybridization (ISH). Briefly, slides were 

permeabilized with 0.5% (v/v) Triton X-100 (in PBS) for 10 min, rinsed with PBS (5 min 

x 3), then digested with Proteinase K (100 pg m l'1 in PBS) for 15 min at 37 °C, followed 

by a 5-min wash in 0.2% (w/v) glycine PBS solution to stop proteolysis, and incubated in 

2 x SSC (17.53 g L '1 NaCl, 8.82 g L '1 citric acid; pH 7.0) for 10 min at room temperature. 

Slides were incubated in pre-hybridization buffer (4 x SSC, 50% (v/v) formamide, 0.5 

mg m l'1 Salmon sperm DNA, and 1% (v/v) fetal bovine serum) at 42° C for 45 min. After 

incubation, excess pre-hybridization buffer was carefully drained off, the area with tissue 

was outlined with a Frame-seal incubation chamber (MJ Research INC.), then aliquots of 

50-pl of hybridization solution (50% de-ionised formamide; 4 x SSC; 0.5% (w/v) SDS;

25 pg m l'1 FITC-labeled DNA probe) (probe synthesis as in Li et al. 2006) were added 

within the area, sealed with plastic cover slip. Each slide was then placed into a thermal 

cycler for 3 min at 72° C, and cooled on ice for 2 min. Slides were incubated in a humid
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chamber overnight at 42° C. The slides were then washed in 2 x SSC ( 2 x 5  min), 1 x 

SSC (2><5 min), PBS (10 min) and Maleic Acid Buffer (MAB: 100 mM maleic acid, 150 

mM NaCl; pH 7.5) for 10 min. The slides were then incubated in blocking solution (1% 

(w/v) Blocking reagents in MAB, Roche). Anti-FITC alkaline phosphatase conjugate 

antibody (Sigma-Aldrich) was diluted 1:2000 in blocking solution and sections were 

incubated with the diluted antibody for 3 h at room temperature with gentle agitation. 

Unbound antibody was removed with two 5 min washes in buffer I (100 mM Tris, 150 

mM NaCl, pH 7.5) and two 5 min washes in Buffer II (100 mM Tris, 100 mM NaCl, 50 

mM MgC^, pH 9.5). The slides were then incubated with BCIP/NBT liquid substrate 

solution (Sigma-Aldrich) in dark for 2 h. The color reaction was stopped by washing in 

TE buffer (10 mM Tris, ImM EDTA, pH 7.5) and dH20  for 5 min, respectively. The 

slides were mounted with aqueous mounting medium (90 % glycerol, 0.1 m Tris-HCl, pH

8.0 and 2.3 % DABCO) and glass coverslips applied. Clear fingernail polish was applied 

to the edges of the cover slips to prevent evaporation. Slides were examined using an 

Olympus BX51 microscope, and images were captured with a Nikon DXM 1200 digital 

camera.
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RESULTS

Hemocytes of the spiny lobster Panulirus argus

Three major hemocyte types were identified in the Caribbean spiny lobster: 

hyalinocytes, semigranulocytes, and granulocytes (Fig. 1). Hyalinocytes contained no or 

a few small granules, and were often found as a spindle or round shapes, ranging in size 

from 12 to 18 pm. Semigranulocytes contained many small and a few larger (>1 pm) 

granules, were morphologically variable from spindle, ovoid or round in shape, and 

ranged in size from 14 to 23 pm. Granulocytes contained many large (>1 pm) and a few 

small granules, were also variable in shape, and ranged from 17 to 28 pm.

The number of circulating hemocytes (total hemocyte count, THC) in the spiny 

lobster was around 8.0 xlO6cells m r'(range 6.68 xlO6 - 9.58 x io 6, n =16). Hyalinocytes 

(H) represented approximately 15% (15.2 ± 2.0%, n =16) of the total circulating 

hemocytes, semigranulocytes accounted for 58% (57.9 ± 3.7%, n =16), and granulocytes, 

27% (26.9 ± 4.2%, n = 16).

Optimization of culture media

The lobster hem ocytes survived but did not proliferate in each o f  the four culture m edia  

tested, and no mitosis was observed in any of the hemocyte cultures. After 1 day, 

hemocytes cultured in ML-15, L-15, Grace’s media and RPMI-1640 maintained high 

viability, with >90% of the cells remaining alive (Fig. 2 A). However, over the next three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

52

days, the viability of cells cultured in RPMI-1640 decreased to 25%, which was 

significantly lower than cells in the other media (Fig. 2 A). By day 8, most cells cultured 

in RPMI-1640 had died, whereas mean cell viability was 79.5 ± 4.7 % in ML-15 medium, 

68.4 ± 7.2 % in Grace’s medium, 45.8 ± 3.8 % in L-15 medium. By day 12, cell viability 

decreased to 43.0 ± 2.2 % in ML-15 medium, 32.4 ±4.1 % in Grace’s medium, and

26.4.0 ± 2.9 % in L-15 medium (Fig. 2 A).

Fetal bovine serum, a standard supplement in many cell culture systems, was not 

an effective additive and hampered cell viability in this study. Hemocytes cultured in the 

ML-15 medium supplemented with 5%, 10%, and 15% FBS, respectively, were 

consistently degraded, with viabilities of only 3 ~ 4% after 11 days in culture (Fig. 2 B). 

Hemocytes cultured in media without supplementation with FBS retained much higher 

viability (Fig 2 A, B).

Primary cultures of separated hemocytes

In previous mixed hemocytes cultures, within 2-7 days, most of the granulocytes 

dehisced, releasing their contents into the culture media, potentially impacting the 

survival of other the cell types (Fig.3). In order to improve cell viabilities o f cultured 

hemocytes, lobster hemocytes were separated into three distinct fractions using Percoll 

discontinuous gradients and cultured separately.

In the colum n o f  the Percoll step gradients, the fraction enriched w ith  

hyalinocytes was located between density gradients of 1.062 and 1.067 g m l'1; in this 

fraction (H), hyalinocytes comprised more than 80% of the cells with semigranulocytes 

making up the rest. The fraction enriched with semigranulocytes was located between
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density gradients o f 1.067 and 1.072 g m l'1. This semigranulocytes (SG) fraction was 

comprised of approximately 90% semigranulocytes, with 7% of hyalinocytes and 3% of 

granulocytes. The granulocytes (G) fraction accumulated in the interface between 1.082 

and 1.086 g m l'1 gradients; over 94 % of the cells in this fraction were granulocytes, with 

only a small proportion (< 6 %) of semigranulocytes and no hyalinocytes (Fig. 4).

From the culture of unseparated hemocytes, cells maintained in ML-15 medium 

survived better than those in other media; therefore, ML-15 medium was selected as the 

medium for maintaining the separated cell types. Viability improved dramatically in 

hyalinocytes and semigranulocytes grown in the absence of granulocytes. Hyalinocytes 

and semigranulocytes survived up to 18 days with viabilities o f 77.6 % (± 6.4%) and 79.1 

(± 7.1%) respectively. Separated granulocytes died quickly, within 4 or 5 days (Fig. 5).

In vitro propagation of PaVl

Hemocytes from cultures inoculated with the virus showed cytopathic effects 

(CPE) after 12-h post-inoculation with 1:1 diluted PaVl inoculum. Initially, the affected 

cells changed from round or oval shapes to an irregular shape (Fig. 6A). As the infection 

progressed, the infected cells gradually shrank and became surrounded by exudates or 

cell debris (Fig. 6B). After 72 hrs, cell death was obvious, and inoculated cultures were 

comprised of few live cells and much cell debris (Fig. 6C).

The infection of PaVl in cultured hemocytes was confirmed by in situ 

hybridization using a specific 110-bp DNA probe of Li et al. (2006). The unambiguous 

dark staining of PaVl infected cells was observed after 24 h post-inoculation. No PaVl
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positive signals were detected in cell cultures inoculated with hemolymph filtrates from a 

healthy lobster (Fig. 7).

By 48 h post inoculation, 23.45 % ( + 10 ) of the cells exposed to the l:l-diluted 

inoculum had survived; over 50 % of cells exposed to greater dilutions of the inocula had 

survived, whereas more than 93 % of cells in the control groups had survived. By 72 h 

post inoculation, most cells that had been exposed to the virus had lysed in the 1 :1  and 

1:10 dilution groups; whereas most of the cells in control groups remained alive (~ 90 %) 

(Fig. 8 ). The amount of infectious virus in the undiluted inoculum was 4 x 103 TCID50 

ml' 1 when calculated with the end point dilution assay (Reed and Muench, 1938) based 

on percentage of cells surviving at the end of the assay.
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DISCUSSION

We have developed the primary culture of hemocytes from the Caribbean spiny 

lobster Panulirus argus for in vitro studies of Panulirus argus Virus l(PaV l). Primary 

cultures of hyalinocytes and semigranulocytes were susceptible to PaVl, showing 

obvious cytopathic effects (CPE) within hours of exposure to a high dose o f PaV 1. Even 

though the cultured hyalinocytes and semigranulocytes were susceptible to PaVl, we 

could not develop a plaque assay for quantitative study of the virus, because lobster 

hemocytes do not undergo mitosis and no confluent cell layer could be formed; i.e., the 

cells formed dispersed monolayers. However, a CPE assay using an estimate of the 50% 

tissue culture infectious dose (TCID50) method provided an alternative to determine viral 

titer (see Darling et al. 1998). Such assays have been successfully applied to quantify the 

infectious titer of several other crustacean viruses including yellow head baculovirus 

(Assavalapsakul et al., 2003; Lu et al., 1995) and non-occluded baculo-like virus (Tapay 

et al., 1997). The in vitro quantal assay based on CPE will facilitate better understanding 

of infection dynamics o f PaVl in the spiny lobster. However, because hemocytes do not 

multiply in vitro, the application is limited in its ability to grow large quantities of the 

virus for in vitro studies.

We demonstrated that the PaVl virus infected in vitro cultured hyalinocytes and 

semigranulocytes using a specific DNA probe. The rapid infection and mortality of the 

hemocytes is interesting given that infections in juvenile lobsters last from 30-80 d
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(Shields and Behringer, 2004). However, the dynamics within the host will no doubt be 

different due to immune defenses, stimulation o f hematopoietic tissues, and other factors. 

In the lobster, the virus also infects the cells o f the spongy connective tissues, and may 

cause different effects in these, however this tissue cannot as yet be successfully cultured.

Lymphoid and ovary tissues are often the targets for pathogenic viruses in 

shrimps; therefore, these cells are frequently used in in vitro studies of viral pathogenesis 

(Assavalapsakul et al., 2003; Chen and Wang, 1999; Lu et al., 1995; Maeda et al. 2004; 

Tapay et al., 1997; Wang et al., 2000). Comparatively limited efforts have been made to 

develop in vitro cultures of hemocytes from other crustacean species. Itami et al. (1999) 

cultured large granular hemocytes from P. japonicus for up to 10 days and inoculated 

them with penaeid rod-shaped DNA virus, however, no CPE was observed over the 10 

day period of incubation. Walton and Smith (1999) separated and collected hyalinocytes 

from the crabs, Liocarcinus depurator and Carcinus maenas. They were able to maintain 

these cells for up to 14 days with more than 70% viability in an optimized L-15 medium. 

In our cultures, separated hyalinocytes and semigranulocytes survived up to 18 days with 

high viability (~ 80%), and maintained an even higher viability (> 90%) in the earlier 

period of culture.

A variety of culture media have been tested for the primary culture o f crustacean 

tissues, these include Leibovitz L-15, Grace’s insect medium, RPMI-1640, Medium 199, 

and several specifically formulated media (Luedeman and Lightner 1992; Nadala et al., 

1993; Tong et al., 1996; Walton and Smith, 1999). Leibovitz L-15 and Grace’s insect 

medium have been considered the best commercial medium for tissue culture of 

crustaceans (Luedeman and Lightner, 1992; Nadala et al., 1993; Walton and Smith, 1999).
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In our study, Grace’s insect medium and double strength Leibovitz L-15 medium (2 x L- 

15) supported cell survival in the first 6 days of culture for unseparated lobster hemocytes; 

however, the Modified L-15 medium yielded better results for longer term viability (>

80% by day 15). The higher concentration of glutamine and glucose in Grace’s media 

and L-15 medium apparently benefited the survival of in vitro cultured hemocytes o f the 

spiny lobster.

Fetal bovine serum (FBS) is often used as a supplement in crustacean and mollusk 

cell culture (Chen and Wang, 1999; Luedeman and Lightner 1992; Sano, 1998; Walton 

and Smith, 1999). In this study, fetal bovine serum (even treated with Charcoal-dextran 

absorption) degraded the viability in whole hemocyte cultures even at a low 

concentration of 5%. Semigranulocytes and granulocytes are sensitive to foreign particles, 

particularly glucans, lipopolysaccharides, and bacteria, and often lyse to release 

prophenoloxidase and other components involved in cytotoxicity and melanization 

pathways (Soderhall and Cerenius, 1992). FBS presumably caused the granulocytes to 

dehisce and lyse, causing further deterioration of remaining cells. Other supplements, 

such as cell-free plasma or filtrates from homogenized tissues, that have been used to 

support microbial pathogens of crustaceans (Toullec, 1999), were not tested in this study 

due to their potential to induce cross reactions among individual lobsters.

Traditionally, crustacean hemocytes have been classified into three types of cells: 

hyalinocytes, semigranulocytes, and granulocytes, according to the number and size of 

granules they contain (Bauchau, 1980) and their biological function (Soderhall and Smith, 

1983). Hose et al. (1990) proposed a different classification based on morphology, 

cytochemistry, and studies of cell function, and suggested that hyalinocytes and
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granulocytes represent two distinct cell lineages, with granulocytes representing a 

continuum of differentiation from the less mature small-granule hemocytes to the large- 

granule hemocytes. We found that granulocytes were distinctly different from the other 

two cell types in morphology, and that they were particularly sensitivity to the in vitro 

environment, surviving only a short period when compared with the other two 

subpopulations. In the initial period (2 to 3 days) of separated hemocyte cultures, some 

hyalinocytes became morphologically like semigranulocytes, whereas no transformation 

was observed between semigranulocytes and granulocytes. Although we retain the 

traditional classification of hemocyte types in the Caribbean spiny lobster, more work is 

needed to fully appreciate the functional and biochemical differences among cell types. 

Additional experiments with culturing techniques will facilitate further in vitro study of 

crustacean hemocytes.
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Figure 1. Light microscopy of hemocytes from the spiny lobster, Panulirus argus: 

Hyalinocytes (H), semigranulocytes (SG), and granulocytes (G). Scale bar = 10 pm
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Figure 2. (A) Viability o f unseparated hemocytes o f P. argus cultured in L-15, ML-15, 

Grace’s Insect medium, and RPMI-1640 medium. (B) Viability o f unseparated 

hemocytes of P. argus cultured in ML-15 medium supplemented with 0%, 5%, 10%, and 

15% FBS. Values are means ± STD (n=12).
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Figure 3. Light microscopy of unseparated hemocytes o f the spiny lobster P. argus at 1st 

(A) and 5th (B) day in culture. Note those dehisced granulocyte (arrowheads). H: 

hyalinocytes; SG: semigranulocytes; G: granulocytes. Scale bars = 10 pm.
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Figure 4. Light microscopy of P. argus hemocytes in fractions from Percoll 

discontinuous gradient separation: H: hyalinocytes, SG: semi-granulocytes, and G: 

granulocytes. Scale bars = 10  pm.
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Figure 5. Cultures o f separated hemocytes grown in ML-15 media. H: hyalinocytes; SG: 

semigranulocytes; G: granulocytes. Values are means ± STD (n=5).
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Figure 6. Cytopathic effects o f cultured hemocytes infected with PaVl inoculum (1:10 

diluted). (A) 12 h post-inoculation with PaVl filtrates, (B) 48 h post-inoculation, (C) 72 h 

post-inoculation. Note the morphological change (black arrow) and degradation (white 

arrow) of hemocytes when infected with PaVl. (D) Control culture at 72 h post­

inoculated with hemolymph filtrates from a healthy lobster. Scale bars = 20 pm.
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Figure 7. Detection of PaVl in primary cultures o f separated hemocytes (hyalinocytes 

and semigranulocytes) of P. argus by in situ hybridization. A: 24 h post-inoculation with 

hemolymph fitrates from a healthy lobster, B: 24 h post-inoculation with PaVl filtrates; 

note the dark staining of infected cells (black arrows), and the debris of lysed cells (arrow 

heads). Transmitted light microscopy. Scale bars = 20 pm.
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Figure 8. Survival of cultured hemocytes of P. argus inoculated with serially diluted viral 

inoculum. Survival was defined as (numbers of survived cells / initial amount of cells) x 

100 % of each well. Values are means ±  STD (n = 12).
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CHAPTER 3

Pathology and hematology of the Caribbean spiny lobster experimentally infected with 
Panulirus argus virus 1 (PaVl)
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MANUSCRIPT ABSTRACT

We conducted a study of the histopathological and hematological response of 

the Caribbean spiny lobster to experimentally induced infections with PaV 1. The fixed 

phagocytes in the hepatopancreas were the initial site of PaVl infection in spiny lobsters. 

Fixed phagocytes were activated in early infections; however, as the disease progressed, 

the fixed phagocytes became infected and eventually lysed. Infected cells were 

subsequently observed in the hepatopancreas, gill, heart, hindgut, glial cells around the 

ventral nerves, as well as in the cuticular epidermis and foregut. In advanced infections, 

all o f the spongy connective tissues were infected as were the glial cells around the optic 

nerves. The structure of the hepatopancreas was also significantly altered as the disease 

progressed. The hemal sinuses among the hepatopancreatic tubules filled with massive 

amounts of cellular aggregates, including infected circulating hemocytes and infected 

spongy connective tissues. Atrophy o f the hepatopancreatic tubules occurred in the late 

stage o f viral infection. The virus caused significant decreases in total hemocyte density 

in later stages of infection and significantly altered several constituents in the hemolymph 

serum of diseased lobsters, including: glucose, phosphorus, triglycerides, and lipase.
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INTRODUCTION

The Caribbean spiny lobster Panulirus argus occurs throughout the Caribbean 

basin and Western Atlantic from Brazil to Bermuda (Holithius, 1991) and supports 

valuable commercial and recreational fisheries throughout its range (FAO, 2001, 2004; 

Harper, 1995). In Florida, for example, the commercial landings of Caribbean spiny 

lobster have varied between 4.3 million pounds and 7.9 million pounds per year from 

1970 to 1999. In 1999, the total landings o f the spiny lobster decreased and by 2001 they 

had dropped to 3.4 million pounds, the lowest reported landings since 1982, 

approximately 45% less than the historical average landings (FMRI, 2005; Muller et al., 

1997). The recently identified pathogenic virus, Panulirus argus Virus 1 (PaVl), is 

thought to have contributed to the decline (Shields and Behringer, 2004).

PaVl primarily infects benthic juvenile lobsters (20 to 55 mm carapace length, 

CL), with prevalence decreasing rapidly in relation to size (Shields and Behringer, 2004). 

The virus occurs throughout the Florida Keys, with the prevalences of visibly infected 

juveniles ranging from 6 % to 8 %, and reaching 37 % in some areas (Shields and 

Behringer, 2004). The virus is transmitted by contact, through food, and over short 

distances (< lm) through the water (Behringer 2003; Butler et al. in review), but healthy 

lobsters can sense and avoid diseased lobsters and this may limit the spread of the virus in 

the lobster population (Behringer et al., 2006). PaVl infects certain hemocytes and
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spongy connective tissues in several tissues and organs (Shields and Behringer, 2004). 

However, the sites of early infection, the progression of PaVl infection in the spiny 

lobster and the hematological response o f the host to viral infection have not been 

examined. Therefore, we report the pathology and hematology of spiny lobster over a 

time course of experimental infection by PaV 1.
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MATERIALS AND METHODS

Caribbean spiny lobster Panulirus argus

Juvenile spiny lobsters, 25 to 50 mm carapace length (CL), were collected from 

the Florida Keys by hand using SCUBA. Lobsters with apparent signs o f disease (Shields 

and Behringer, 2004) were held separately in 38 L glass aquaria with flow-through 

ambient seawater (salinity = 35 ± 1 ppt, temperature = 24 ± 1 ° C) equipped with 

biological filters (Whisper) filled with pre-conditioned crushed coral, and used as donors 

for inoculation trials. All other lobsters were randomly divided into groups (four to five 

animals) and housed separately in 76-L glass aquaria. Lobsters were acclimated for at 

least two weeks prior to inoculation trials. During experiments, lobsters were fed squid 

three times per week, and water changes were made as needed to ensure that water 

quality parameters remained within acceptable limits: ammonia (0-0.3 ppm), nitrite 

(0-0.6 ppm), pH (7.4-8.4), salinity (35 ±  1 ppt) and temperature (23 ±  1 ° C).

Viral inocula

Viral inocula were extracted from hemolymph of heavily diseased lobsters, 

which were histologically confirmed to have heavy infections (Shields and Behringer, 

2004). The infectious titer of the inocula was quantified later on frozen pooled sera
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using a 50 % tissue culture infectious dose assay (TCID50) from Li et al. (2007). Briefly, 

diseased hemolymph was mixed with an equal volume of citrate/EDTA anticoagulant 

(0.45M NaCl, 0.1M glucose, 30mM sodium citrate, 26mM citric acid, lOmM EDTA; pH 

= 5.4; Soderhall and Smith, 1983) and homogenized with a glass homogenizer (Pyrex®, 

Coming Inc.) at 4 0 C for five minutes. The homogenate was then centrifuged at 3000 x g 

for 10 min at 4° C, and the supernatant filtered through a 0.45-pm filter. The viral 

filtrates were serially diluted with modified Leibovitz L-15 medium (ML-15) (Li et al., 

2007) to 1:1, 1:10, 1:100 and 1:1000 and used as inocula.

Aliquots of 100 pi of inocula were inoculated separately into one-day old 

hemocyte cultures (semigranulocytes and hyalinocytes) in 48-well tissue culture plates 

(Costar®, Costar Corp.). The plates were incubated at 22 -  24 0 C for 96 h, and 

supplemented with fresh media at two-day intervals. The inoculated primary cultures 

were examined daily with an inverted microscope, and images were taken for assessment 

of cytopathic effects (CPE). TCID50 was calculated at 96 h based on the end-point 

dilution assay of Reed and Muench (1938).

Experimental infection

Lobsters were inoculated through the arthrodial membrane at the juncture o f the 

basis and ischium of the fifth walking leg. Two separate inoculation trials were conducted 

to examine the pathological response of the hosts over different time scales and viral 

dosages. Trial I was a short term infection study, where lobsters were dosed with the
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virus, then necropsied over the course o f fifteen days. Trial II was a long term infection 

study, where lobsters were inoculated with the virus, then necropsied at 1 0 -day intervals 

over 77 days. Trials I and II were undertaken at different times with different viral doses 

(see below).

In Trial I, hemolymph samples from heavily infected donors were pooled,

diluted with Citrate-EDTA anticoagulant (1:9) and used as inoculum (virus titer = 5.8 x

2 * • • • .10 TCID50 /ml). Aliquots o f 1 0 0 -pl o f inocula were injected separately into 30 healthy

lobsters using sterile 27-gauge needles. Inoculated animals were held together in groups 

o f three to four animals per 76-L aquarium. Controls consisted of 18 animals injected 

with an equivalent volume of the mixture o f the anticoagulant and hemolymph collected 

from healthy lobsters. Animals serving as controls were held together in groups o f three 

to four animals per 76-L aquarium. At days 1, 3, 5, 7, 10, andl5 post-inoculation (p.i.) 

five animals from the virus inoculated group and three animals from control group were 

randomly selected and processed for diseases assessment.

In Trial II, hemolymph from heavily infected donors (different donors than in 

Trial I) was pooled, then diluted with Citrate-EDTA anticoagulant (1:2) and used as 

inocula (virus titer = 1.2 x 103 TCID50 /ml). Aliquots of 100-pl of inocula were injected 

separately into 50 healthy lobsters using sterile 27-gauge needles. Controls consisted of 

30 lobsters injected with an equivalent volume of the anticoagulant. Inoculated and 

control animals were held separately in groups as detailed above. At roughly 10-day 

intervals until 80 days p.i., five lobsters from the experimental group and three lobsters 

from the control group were randomly selected, dissected and processed for 

histopathological assessment o f PaVl infection and blood chemistry analysis.
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Hemolymph and other tissues were collected from each lobster and processed for 

histological and hematological analysis as described below.

Diagnosis of PaVI infection

Several tissues were collected for histology from each dissected lobster, 

including hepatopancreas, hindgut, gill, heart, cuticle epidermis, nerve tissue, and in 

some cases, compound eyes and antennal gland. Tissues were fixed in Bourn’s solution 

(Fisher) or Z-fix (Anatech Ltd.) for approximately 24 hours, rinsed with tap water for 45 

min, then held in 70 % EtOH, processed through paraffin histology and stained with 

Harris hematoxylin and eosin Y (H&E) (Humason, 1979). Eyes were decalcified 

overnight in citrate-EDTA, cut in two and processed as above. All tissues were examined 

using an Olympus BX51 microscope and photographs were taken using a Nikon 

DXM1200 digital camera. When infections were ambiguous via normal histopathology, 

tissue samples were processed for diagnosis o f viral infection using fluorescence in situ 

hybridization (FISH) as detailed in Li et al. (2006).

Biochemical and hematological analyses

Hemolymph was drawn with a 27-ga. syringe from the juncture between the 

basis and ischium of the fifth walking leg. Aliguots o f 1 ml hemolymph of each animal 

were stored in an ultracold freezer (-80 °C) for biochemical analysis. Frozen hemolymph 

samples were thawed on ice. Serum was collected using a pipette, and then centrifuged at 

3,000 xg for 10 min at 4 °C (IEC Thermo Centra) to remove cell debris. Sera were then 

processed through an Olympus AU400 clinical chemistry analyzer (Olympus Americas,
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Inc.) for blood chemistry analysis. Glucose, total protein, phosphorus, triglycerides, 

lipase, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), 

alkaline phosphatase (ALKP), gamma-glutamyl transpeptidase (GGT), calcium, sodium, 

potassium, and chloride were measured according to the manufacturer’s manuals. 

Hemolymph collected from Trial II was immediately processed for total hemocyte counts 

(THC) and differential hemocyte counts (DHC). Briefly, THC and DHC were processed 

with a Neubauer hemacytometer using the Olympus BX51 microscope equipped with a 

Nomarski Differential Interference Contrast Filter. Hemocytes were categorized as 

hyalinocytes, semigranulocytes or granulocytes based on cell size, cell shape, and 

granularity as in Li and Shields (2007). Differences in biochemical and hematological 

constituents between control and experimental groups were examined statistically with 

SYSTAT (SYSTAT Software Inc.). One-way ANOVA was used to examine differences 

in measurement o f biochemical and hematological constituents in lobsters with different 

disease categories (healthy, light-medium infection, and heavily infected) as determined 

by histological examination. The data were log transformed to meet parametric 

assumptions.
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RESULTS

Disease status of experimental lobsters

The severity of viral disease in lobsters was rated as Category 0, 1, 2 or 3 based 

on pathological changes in all tissues examined (Table 1). Infected cells were 

characterized by hypertrophied nuclei, margination and condensation o f peripheral 

chromatin and eosinophilic Cowdry-like inclusions. For each tissue, the level of infection 

was rated as 0, 1, 2, or 3 based on the number o f infected cells per section examined 

microscopically at 400 x; 0, no cells with observable pathology; 1, <10 infected 

cells/section; 2, 10 ~ 100 infected cells/section; 3, >100 infected cells/section.

The disease status o f lobsters is summarized in Figure 1. In Trial I, only one 

lobster was lightly infected and another moderately infected by 15 day p.i. There was no 

observable pathology in any of the lobsters before that time. In Trial II, the virus was 

highly infectious, presumably because of the higher dose, and by day 10 p.i., 80 % of the 

lobsters were infected, including one with a moderate infection. By day 20 p.i., all 

lobsters inoculated with virus were infected; most (80 %) were moderately infected, and 

one was heavily infected. By day 30 p.i., 60 % of the inoculated lobsters were heavily 

infected and 40 % moderately infected. After 40 days p.i., all of the lobsters that were 

inoculated were heavily infected. In both trials, all but one o f the control lobsters were 

healthy, the single infected control was consistent with the background level of the virus 

present in wild.
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Progression of disease in experimentally inoculated animals from Trial I

In Trial I, infected cells were initially observed in the hepatopancreas of the two 

infected lobsters at day 15 p.i. Fixed phagocytes in the hepatopancreas appeared to be the 

primary cell associated with PaVl infection in spiny lobsters. Significant alterations of 

the fixed phagocytes were observed in the hepatopancreas in relation to the progression 

of the infection (Fig. 2). Activated fixed phagocytes were significantly enlarged, with 

highly vacuolated cytoplasm and sparse granules (Fig. 2 B). As the infections progressed, 

fixed phagocytes were obviously infected by the virus (Fig. 2 C). In the hepatopancreas 

of the moderately infected lobster, the typical rosette structure of fixed phagocytes 

around the arterioles was no longer discernible. (Fig. 2 D). There were no overt 

pathological changes in other tissues during this early period of infection, except that 

granulomas were present in the antennal gland of the lightly infected lobster (Fig. 2 E).

As no infected cells were observed in the antennal gland, this pathological changes may 

not be associated with PaV 1 infection.

Total hemocyte counts (THCs) varied over time and between treatments. 

THCs in inoculated lobsters increased due to the stimulation of inoculation, and then 

decreased significantly thereafter (Fig. 3). By day 15 p.i., THCs of PaV 1-inoculated 

lobsters were significantly lower than those in controls (ANOVA, p<0.01). THCs of 

lobsters from the control group varied in the first 3 to 4 days p.i. and then gradually 

recovered to the initial density. Relative changes among types of hemocytes were not 

significantly different between treatments (data not shown). Therefore, the absolute 

changes in THC were consistent between cell types with treatments. However,
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granulocytes appeared to accumulate in the enlarged hemal spaces o f the hepatopancreas 

of a lobster inoculated with PaVl by day 15 p.i. (Fig. 2 F).

Progression of disease in tissues of experimental infected animals from Trial II

As expected, the progression of infection and disease varied between Trials 

(Fig. 1). The pathological changes in the tissues o f lobsters with light or moderate 

infections were similar in both trials, but more animals were infected in Trial II.

Day 10 p.i.: Infected cells were observed in hepatopancreas, gill, heart, central 

nerve tissue and hindgut, but they were not observed in the cuticular epidermis and 

compound eyes (Table 2). The hepatopancreas o f lightly infected animals maintained 

its normal architecture (Fig. 4 B). Many o f the fixed phagocytes were infected, but the 

architecture o f the supporting spongy connective tissue was unchanged (Fig. 2 C). 

Reserve inclusion (RI) cells were abundant in lobsters in the intermolt stage. No overt 

pathological changes were observed in other tissues in the initial stage o f exposure, 

except that a few infected circulated hemocytes (<10 / section) were occasionally present.

Day 20 p.i.: The hepatopancreas, gill, heart and central nerve tissues were 

moderately infected by PaVl, with many infected cells (10 ~ 100 /section) present in 

these tissues (Table 2). A few infected cells were observed in the cuticular epidermis 

around the foregut, but no infected cells were observed in the tissues of the compound 

eye. Infected cells were easily identified in tissue sections stained with H&E. As 

infection progressed, the hemal sinuses within the hepatopancreas became filled with 

infected cells, including fixed phagocytes, hyalinocytes and semigranulocytes (Fig. 4 C).
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Most fixed phagocytes were infected by the virus, and the rosette-like structure of the 

fixed phagocytes was apparently altered, with cross sections showing few normal cells in 

the rosette. There was no clear separation o f the connective tissue cells supporting the 

arterioles and there was an apparent increase in spongy connective tissue cells (Fig. 4D).

Day 30 p.i.: The hepatopancreas, gill and central nerve tissue of diseased 

lobsters were heavily infected; and the spongy connective tissue in the myocardium of 

heart, hindgut and cuticular epidermis tissues was moderately infected. Spongy 

connective tissues appeared to proliferate around the tubules of the hepatopancreas in one 

heavily diseased lobster (Fig. 4 D). There were no obvious changes in the tissues of 

diseased animals by day 40 p.i. compared with those of day 30 p.i., except that infected 

cells occurred in the hemal sinuses of the optic nerve region in the eyes o f diseased 

animals.

Day 50 p.i. and thereafter: There seems to be an abnormal proliferation of 

spongy connective tissues within the hepatopancreas and hindgut (Fig. 4 E, Fig. 5 A). 

However, the fibrous connective tissues showed no histological signs o f viral infection 

(Fig. 5 B). The spongy connective tissues around the nerves were heavily infected (Fig. 5 

C). In the hearts o f heavily diseased animals, there were slight proliferations in the 

spongy connective tissues comprising the supportive, outer portion of the arterioles (Fig.

5 D). In lobsters chronically (> 60 days) infected by PaVl, the hemal spaces among the 

tubules of the hepatopancreas were markedly dilated; the tubules of the hepatopancreas 

were greatly atrophied and filled with large numbers of infected cells (Fig. 4 E, F). As the
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disease progressed, RI cells were gradually depleted in the hepatopancreas o f chronically 

infected lobsters.

Hemolymph serum chemistry of experimental animals

Values o f the specific serum constituents were analyzed separately by trial using 

time course and by severity. Severity o f the disease was significantly associated with 

changes in a few constituents, but the time course was not significantly associated with 

changes in serum constituents. That is, the sera from animals exhibiting light, moderate 

or heavy infections showed significant differences in the study, but there was no 

association with the time or length o f infection. Only four constituents showed 

significant changes with severity of disease in Trial II (Table 3); whereas, there were no 

significant alterations in the constituents in Trial I because o f the short span of time for 

the disease to develop (data not shown). Separate controls were used for each of the 

trials.

The changes in tissue constituents showed three patterns: (1) Absolute 

decreases in relation to severity: i.e., glucose levels in the hemolymph of infected lobsters 

decreased significantly in relation to severity, with healthy animals having the highest 

glucose levels, and infected animals having depleted glucose levels. (2) Fluctuations in 

relation to severity: i.e., phosphorus and triglyceride levels were significantly lower in 

lobsters with light or moderate infection, and were significantly higher in lobsters with 

heavy infections when compared to uninfected animals. (3) Dips in relation in severity: 

i.e., lipase was significantly lower in lobsters with light or moderate infections, and but 

not in lobsters with heavy infections when compared to controls. AST, ALKP, and serum
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were observed due to the high variances. No significant differences were observed among 

other biochemical constituents (Table 3). These changes likely reflect tissue degradation 

and catabolism of the hepatopancreas in relation to the severity o f disease.
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DISCUSSION

PaVl initially infects fixed phagocytes in the hepatopancreas. Along with 

circulating hemocytes, the fixed phagocytes in the hepatopancreas o f decapod 

crustaceans play an important role in the cellular defenses by filtering foreign materials 

from the hemolymph (Factor, 1995; Factor et al., 2005; Johnson, 1980; 1987). Fixed 

phagocytes are the only cell type other than circulating hemocytes that phagocytize 

foreign particles in the hemolymph (Johnson, 1987). For example, fixed phagocytes 

apparently play a role in the phagocytosis and infection of BFV in the blue crab (Johnson, 

1980), where virions aggregate around the degenerated cytoplasm of infected fixed 

phagocytes, and enclosed by the interrupted layer, a basal lamina surrounding fixed 

phagocytes (Johnson, 1980). Larger viruses are apparently recognized by the fixed 

phagocytes and removed from the hemolymph, sometimes accumulating within the 

interrupted layer. PaVl is a relatively large virus at 187 nm in diameter (Shields and 

Behringer, 2004). Perhaps its large size facilitates its uptake by fixed phagocytes, which 

then, inadvertently, become infected. Podocytes in the gills are also known to be involved 

in the removal of small foreign particles from the hemolymph of decapod crustaceans 

(Johnson 1980, Hejkal and Gerba, 1981). H ow ever, there w as no obvious infection  o f  the 

podocytes by PaVl (unpublished data).
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The hepatopancreas was associated with the progression of the disease. In 

light infections, the fixed phagocytes in the hepatopancreas were initially infected, 

followed by adjacent spongy connective tissue cells and hemocytes. As infection 

progressed, the hemal sinuses within the hepatopancreas became filled with infected cells; 

and spongy connective tissues appeared proliferated within these sinuses. In heavy 

infections, the hepatopancreatic tubules were significantly altered, atrophying, and the 

hemal sinuses became filled with cellular aggregates. The atrophy of the hepatopancreas 

was apparent at both the gross and microscopic levels of observation. The spongy 

connective tissues and hemocytes in the other organs also became infected with PaV 1, 

but the organs did not show gross alterations. These cellular aggregates associated with 

the infection appear to be comprised of spongy connective tissues and not infiltrates of 

hemocytes. Farley et al. (1972, 1978) reported the first invertebrate herpes-like virus 

from the oyster Crassostrea virginica and found massive cellular aggregates derived 

from hemocytes in the hemal sinuses and vascular tissues in advanced cases o f infection. 

They speculated that the herpes-type viruses may have a proliferative component 

manifesting as cellular aggregates in diseased oysters. Similarly, lymphoproliferative 

disease is associated with herpes viruses in mammals, such as Epstein-Barr virus (EBV), 

which plays a primary role in the development of several types o f B-lymphocyte 

malignancies in humans (Theate et al., 2002; Snow and Martinez, 2007).

PaV 1 infects spongy connective tissue cells, fixed phagocytes, and circulating 

hyalinocytes and semigranulocytes, but not granulocytes (Shields and Behringer, 2004), 

nor fibrous connective tissue. These tissues are all developmentally derived
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embryologically from mesoderm, and it is not unusual for viruses to have specific 

tropisms to particular developmental germ layers. At least six viruses primarily infect the 

hemocytes of crustaceans and other viruses can infect hemocytes as well as other tissues 

(Johnson, 1983; Brock and Lightner, 1990). For example, WSSV infects hemocytes and 

other tissues originating from both mesodermal and ectodermal germ layers 

(Wongteerasupaya et al., 1996; Chang et al., 1996; Lo et al., 1997). The bi-facies virus 

(BFV) from the blue crab Callinectes sa.pid.us (Johnson, 1976, 1988) causes similar 

pathological changes as PaV 1. However, no proliferation of tissues occurs in BFV 

infections.

In the later stages of exposure to PaV 1 in Trial I, total hemocyte density 

decreased; however, the proportion of each type of cell in the hemolymph did not change, 

which is surprising because the granulocytes showed no histological signs o f infection. 

Thus, one would expect to see a relative increase in granulocyte number relative to other 

cell types. We speculate that this is caused by a commensurate decline in granulocytes 

due to the presence of cellular aggregates interacting with the granulocytes in the tissues, 

which we observed in several virally inoculated animals. The circulating hemocytes of 

crustaceans play a key role in the host defense system against invasion of non-self 

particles (Bachere et al., 1995; Jiravanichpaisal et al., 2006; Ratcliffe et al., 1985; Roch, 

1999; Smith and Soderhall, 1983; Soderhall and Cerenius, 1992; Soderhall et al., 1986). 

However, the densities of circulating hemocytes vary upon challenge by different 

microorganisms. Taura syndrome virus (TSV) causes a significant decrease in THCs, 

with relative decreases in the hyalinocytes and granulocytes o f infected Pacific white 

shrimp Litopenaeus vannamei (Song et al., 2003). White spot syndrome virus (WSSV)
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infects the semigranulocytes and granulocytes of Penaeus indicus and causes significant 

decreases in THCs (Yoganandhan et al., 2003). However, WSSV did not cause a decline 

in THCs in infected freshwater crayfish Pacifastacus leniusculus, even though the 

semigranulocytes and granulocytes were susceptible to the virus (Jiravanichpaisal et al., 

2001, 2006). The oomycete Aphanomyces astaci causes a decrease in THCs in the 

crayfish P. leniusculus; and the decline in hemocytes is thought to lower resistance o f the 

crayfish to the pathogen (Persson et al., 1987). Interestingly, we have found no 

correlation between PaV 1 and other diseases in the field or the laboratory (Shields and 

Behringer 2004; Shields unpublished data); therefore, it is not clear whether the loss of 

hemocytes negatively affects the innate defenses o f the lobster host.

The analysis o f biochemical constituents in hemolymph is an important 

assessment of tissue injury, overall health status, and immune function in crustaceans 

(Battison, 2006; Mohankumar and Ramasamy, 2006 a, b; Song et al., 2003; Wu et al., 

2002; Yoganandhan et al., 2003). Glucose and total carbonhydrates in the hemolymph of 

penaeid shrimp Penaeus indicus increase significantly in WSSV infections 

(Yoganandhan et al., 2003). Similarily, activities o f transaminases (ALT and AST) 

increased in the hemolymph, hepatopancreas, gills and muscles o f P. indicus infected 

with WSSV (Mohankumar and Ramasamy, 2006 a). In lobsters infected with PaVl, 

concentrations of glucose, phosphorus, triglycerides, and lipase in the hemolymph 

differed from that of control lobsters. These constituents are involved in the short- and 

intermediate-term energy reserves o f the lobster and their decline indicates the depletion 

of reserve inclusions (RIs) in RI cells. RI cells contain granules that are composed of 

polysaccharides, such as glycogen, and proteins such as hemocyanin (Johnson, 1980),
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and their depletion is often associated with disease agents (Shields and Behringer, 2004, 

Stentiford and Shields, 2005), and is indicative of metabolic wasting or exhaustion 

(Shields and Behringer 2004). However, serum proteins and other constituents (e.g., AST, 

or ALKP) did not increase in response to infection. These enzymes are important 

markers of liver function in vertebrates, and they likely indicate a similar function in 

invertebrates. The changes in glucose, phosphorus, triglycerides and lipase likely reflect 

tissue degradation and catabolism of the hepatopancreas in relation to severity of the 

disease and support the hypothesis that metabolic exhaustion is the primary cause of 

death for infected lobsters.

We have presented the first study of the histopathological and hematological 

response o f the spiny lobster to PaVl over the time course of experimental viral infection. 

The results of this study facilitate our understanding of the pathogenesis of the PaV 1 in 

the lobster host. PaVl is widespread and highly pathogenic to spiny lobsters in Florida 

Keys (Shields and Behringer, 2004). Considering the catastrophic impact o f viral diseases 

in penaeid shrimp (Cai et al., 1995; Inouye et al., 1994; Lightner, 1999; Lo et al., 1996; 

Wang et al., 1998; Wongteerasupaya et al., 1996), future emphasis should be placed on 

development o f efficient diagnostic tools, effective control methods for applications in 

aquaculture, and understanding the transmission of PaVl in nature.
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Table 1. Categorization of the severity o f PaVl disease in the Caribbean spiny lobster 

Panulirus argus.
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Category 0 
Healthy

Category 1 
L ightly infected

Category 2 
M oderately infected

Category 3 
Heavily infected

No aberrant cells with hypertrophied nuclei, no 
peripheral chrom atin nor eosinphilic inclusions 
Hepatopancreas and other tissues appear normal 
Fixed phagocytes appear normal, not activated

A few infected cells (<10 per section) present in 
hepatopancreas or other organs 
Hepatopancreas and other tissues appear normal 
Fixed phagocytes in hepatopancreas activated or a 
few infected

M ore infected cells (10 to 100 per section) present in
hepatopancreas or other organs
Infected cells present in spongy connective tissue
around midgut, heart or gills
M ost fixed phagocytes activated or infected

Interstitial spaces in hepatopancreas filled with 
num erous infected cells (> 100 per section) 
H epatopancreatic tubules atrophied 
M any infected cells present in heart, and spongy 
connective tissue around midgut and other organs 
Focal necrosis in heart 
M orbid behavior
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Table 2. Sequential progression of PaV 1 in the tissues Of spiny lobsters over the time 

course of experimental infection in Trial II. (Category o f infection in each tissue = mean 

± std., n = 5 per time period)
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Days P.I. Hepatopancreas Gill H eart
Central
nerve
tissue

H indgut
Cuticular
epiderm is

Com pound
eyes

Day 10 1.4 ± 0 .6 1.4 ± 0 .9 1.2 ± 0 .5 1.0 ± 0 .7 0.4 ± 0 .5 0.0 ± 0 .0 0.0 ± 0 .0

Day 20 2.0 ± 0.7 1.8 ± 0 .4 1.6 ± 0 .5 1.6 ± 0 .5 1.0 ± 0 .0 0.6 ± 0 .5 0.0 ± 0.0

Day 30 2.6 ± 0 .5 2.4 ± 0 .9 2.0 ± 0 .0 2.2 ± 0 .8 1.8 ± 0 .4 1.8 ± 0 .8 0.0 ± 0.0

D ay 40 2.8 ± 0.4 2.6 ± 0 .5 3.0 ± 0 .0 2.6 ± 0 .5 2.0 ± 0 .0 1.8 ± 0 .5 1.0 ± 1.0

Day 50 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0 .0 2.4 ± 0 .9 1.2 ± 1.3

D ay 60 3.0 ± 0 .0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0 .0 2.6 ± 0 .5 1.6 ± 0 .5

Day 77 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0 .0 3.0 ± 0.0 2.0 ± 0.7
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Table 3. Biochemical analysis of lobster serum compared with disease category (Each 

value is a mean ± SE).
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V ariab le

H ealthy

(n = 13)

L igh t an d  M o d e ra te

(n =  11)

H eavily  infected 

(n =  24)

Glucose (mg/dL) 30.00 ± 6.30“**’ 15.18 ± 2 .4 6 b 13.00 ± 1.86b

Creatinine (mg/dL) 0.23 ± 0.03 0.19 ± 0 .0 4 0.22 ± 0.02

Phosphorus (mg/dL) 1.66 ± 0 .1 6 “ 1.61 ± 0 .2 2 “ 2.25 ± 0.18b*’*

Calcium  (mg/dL) 46.85 ± 1.33 47.31 ± 1.76 48.08 ± 0.99

ALT (U/L) 1.54 ± 0 .3 7 1.09 ± 0 .3 7 1.46 ± 0 .2 0

A ST (U/L) 26.85 ± 4 .7 3 25.00 ± 6 .2 3 38.00 ± 4 .9 8

ALKP (U/L) 383.23 ± 3 6 .6 9 434.64 ± 66.07 479.08 ± 49.23

G GT (U/L) 0.31 ± 0 .2 4 0.36 ± 0.15 0.79 ± 0 .3 3

Triglycerides (mg/dL) 2.92 ± 0.64“** 1.55 ± 0.62b** 4.54 ± 0.78°’*

Sodium (mEg/L) 474.62 ± 10.26 479.09 ± 8 .3 9 473.13 ± 6 .65

Potassium (mEg/L) 12.08 ± 0 .61 10.82 ± 0 .6 0 11.58 ± 0 .4 0

Chloride (mEg/L) 459.23 ± 9.72 471.82 ± 8 .3 5 463.33 ± 7 .4 8

Lipase (U/L) 25.73 ± 16.55“ 7.75 ± 0.76b* 27.63 ± 7.84“

Protein (g/dL) 4.04 ± 0.47 3.39 ± 0 .4 9 4.03 ±0.31

Reff actom eter (g/dL) 6.15 ± 0 .6 4 5.15 ± 0 .5 9 5.99 ± 0.42

D ata were analysed using One-way ANOVA with significance limits o f  0.01(***), 0.05 (**) or 0.08 
(*). Values followed by different letter (a, b or c) were significantly different. Triglycerides were 
significant (p<0 .05 ) when not transform ed, but ju s t over (P<0.0603) when transform ed.
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Figure 1. Infection status of spiny lobsters experimentally inoculated with PaVl (Trial I: 

viral dose = 5.80 x 102 TCID50 /ml; Trial I: viral dose = 1.20 x 103 TCID50 /ml) (n = 5 

per time period). Category 0 (C. 0): healthy; Category 1 (C. 1): lightly infected; Category 

2 (C. 2): moderately infected; Category 3 (C. 3): heavily infected.
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Figure 2. Pathological changes in the tissues o f infected lobsters from Trial I (low dose, 

short term). A: resting fixed phagocytes surrounding an arteriole in the hepatopancreas of 

a healthy lobster, B: activated fixed phagocytes in a lightly infected lobster, C: infected 

fixed phagocytes (arrows) in the lightly infected lobster, D: infected fixed phagocytes 

(arrows) in a moderately infected lobster, E: granulomas in the antennal gland of the

lightly infected lobster, F : accumulation o f granulocytes in hemal sinuses o f the 

hepatopancreas o f the lightly infected lobster. Notice the alteration o f fixed phagocytes 

in hemal sinuses o f the hepatopancreas over a time course o f  PaV 1 infection, and the 

change in cell densities surrounding the arterioles. FP: fixed phagocyte, A: arteriole, L: 

lumen of tubule, Gr: granuloma, G: granulocyte.
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Figure 3. Total hemocyte counts (THC) o f lobsters from control and inoculation group 

over early time course o f infection (Trial I). The number of cells was log transformed. 

Sample size was three lobsters in control and five in experimental groups, bars = standard 

deviation.
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Figure 4. Pathological changes in the hepatopancreas of P. argus from Trial II (high 

dose, long term). A: healthy, B: light infection, C: moderate infection, D: heavy infection, 

E: chronic heavy infection, F: hemal space among the tubules of the hepatopancreas o f a 

chronically infected lobster. Notice the accumulation of massive amount of cells in the 

hemal sinus (HS) among the tubules o f the hepatopancreas in moderately and heavily 

diseased animals. Arrows indicated infected cells. L: lumen of tubule, RI: reserved 

inclusion cell, A: arteriole, SCT: spongy connective tissues.
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Figure 5. Pathological changes in the hindgut (A), gill (B), spongy connective tissues 

around nerve tissues (C) and heart (D, E, F). Infected cells (arrows) were present in the 

hemal sinuses o f the heart, arteriole in the gill, and spongy connective tissues. Notice the 

significant changes in hemal sinuses (HS) in the heart tissues of heavily infected lobster. 

FCT: fibrous connective tissue, RI: reserve inclusion cell, M: myocardium, HS: hemal 

sinus.
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GENERAL CONCLUSIONS

Chapter 1

1) A specific 110-bp probe was generated from a plasmid containing a 177-bp fragment 

o f the virus using the primer pair PaVl 110 F/R. The probe was applied to diagnose 

PaVl in tissues of the Caribbean spiny lobsters Panulirus argus using fluorescence in 

situ hybridization (FISH) assay.

2) In dot-blot hybridizations, the probe had a minimum sensitivity of 10 pg of cloned 

177-bp plasmid DNA. The probe detected the presence of viral DNA from 10 ng of 

genomic DNA extracted from hemolymph of a PaVl infected spiny lobster.

3) The fluorescein (FITC)-labeled probe specifically hybridized to PaV 1-infected 

hemocytes and spongy connective tissue cells in or around the hepatopancreas, 

hindgut, foregut, gill, heart, skin, nerve and even ovary tissues. Most FITC-stained 

foci were located around the inner periphery of the hypertrophied nuclear membrane, 

with a few dispersed throughout the inside of the nucleus.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

96

4) The probe did not hybridize with host tissues of uninfected spiny lobsters, nor 

did it cross-react with a herpes-like virus (HLV) from a blue king crab Paralithodes 

platypus, lymphocystis disease virus (LDV) from a striped bass Morone saxatilis, 

Ostreid Herpesvirus 1 (OsHV-1) from an infected Pacific oyster Crassostrea gigas, 

and Intranuclear bacilliform virus (IBV) from an infected brown shrimp Crangon 

crangon.

This specific and sensitive FISH assay provides a useful tool to investigate infections 

in tissues of lightly infected lobsters in our experimental trials. This probe can be used to 

detect the presence of virus in hemolymph o f lobsters using dot-blot hybridization and to 

monitor the prevalence o f PaVl in nurseries o f juvenile lobster.

Chapter 2

1) Three major hemocyte types - hyalinocytes, semi granulocytes, and granulocytes - 

were identified in the Caribbean spiny lobster based on cell size, cell shape, and 

granularity.

2) Lobster hemocytes were physically separated into three distinct subpopulations 

enriched in hyalinocytes, semigranulocytes, and granulocytes, respectively, using
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Percoll discontinuous gradients centrifugation.

3) A modified Leibovitz L-15 medium supported the best survival of hemocytes in in 

vitro primary cultures. Fetal bovine serum was not an effective additive for survival 

o f hemocytes in vitro in this study.

4) When hemocytes were cultured together, most of the granulocytes dehisced, releasing 

their contents into the culture media, negatively influencing the survival o f other the 

cell types. When cultured separately, hyalinocytes and semigranulocytes maintained 

higher viability (~ 80%) over 18 days incubation compared with granulocytes, which 

degraded over 2-3 days.

5) Hyalinocytes and semigranulocytes cultured in vitro were susceptible to P aV l. 

Cytopathic effects (CPE) were observed as early as 12 h post-inoculation, and cell 

lysis was noticeable within 24 hrs of infection.

6) The presence o f virus within cells was confirmed by in situ hybridization using the 

specific PaV 1 110-bp DNA probe derived from Chapter 1. The unique staining of 

PaV 1 infected cells was observed after 24 h post-inoculation.

The in vitro assay can be applied to quantify the dose of infectious virus in hemolymph 

using a 50% tissue culture infectious dose assay (TCID50) based on CPE. It may also be 

used in propagation of PaV 1 in vitro, which is useful for isolation and purification of the 

virus. The in vitro culture of hemocytes will facilitate better characterization o f different
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hemocyte types of lobster, as well as cell lineage of hemocyte types in crustacean.

Chapter 3

1) The fixed phagocytes in the hepatopancreas were the initial site of PaVl infection in 

spiny lobsters. Fixed phagocytes were activated in early infections and then became 

obviously infected as the disease progressed.

2) Infected cells, including hyalinocytes, semigranulocytes and spongy connective 

tissue cells, were subsequently observed in the hepatopancreas, gill, heart, hindgut, 

glial cells around the ventral nerves, as well as in the cuticular epidermis and foregut. 

In advanced infections, all of the spongy connective tissues were infected as were, 

the glial cells around the optic nerves.

3) The hepatopancreas of infected lobsters was associated with progression of the 

disease. As the infection progressed, the hemal sinuses within the hepatopancreas 

became filled with massive amounts o f cellular aggregates, including infected 

circulating hemocytes and infected spongy connective tissues.

4) In lobsters chronically infected (> 60 days) by PaV l, the hemal spaces among the 

tubules of the hepatopancreas were markedly dilated. The tubules of the 

hepatopancreas were greatly atrophied.
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5) Reserved inclusions (RI) cells were gradually depleted in the hepatopancreas 

o f chronically infected lobsters. This depletion supports the contention that the 

cause of death in infected lobsters is metabolic exhaustion (Shields and Behringer, 

2004).

6) The virus caused significant decreases in total hemocyte density in early infection; 

however, there was no significant change in the proportion of each type of cell in the 

hemolymph.

7) There were significant changes in concentrations of glucose, phosphorus, 

triglycerides, and lipase in the hemolymph of lobsters infected with P aV l. The 

changes in these parameters likely reflect tissue degradation and catabolism of the 

hepatopancreas in relation to severity, and support the hypothesis that metabolic 

exhaustion is the primary cause of death for infected lobsters.

The results of this study indicated that fixed phagocytes in the hepatopancreas of 

experimentally injected lobsters were the initial sites of PaVl infection. I speculate that 

once PaV 1 virions enter the open circulating hemolymph of the lobster, fixed phagocytes 

in the hepatopancreas and elsewhere phagocytize the viruses and remove them from the 

hemolymph. Because fixed phagocytes are susceptible to the virus or perhaps because of 

phagocytosis, the fixed phagocytes become infected by the virus and possibly trigger a 

series o f host defense responses (e.g. accumulation o f hemocytes) against the activated
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and infected fixed phagocytes. However, hyalinocytes and semigranulocytes are 

also susceptible to the virus. Therefore, the virus may be spread via circulation of the 

hemolymph, and cause infection of those tissues originated from mesoderm (e.g. spongy 

connective tissues in hindgut and foregut, glial cells in nerve tissues). However, how the 

virus gains entry into the lobster host naturally and how the virus is spread in the lobster 

host with natural infections requires further study.
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